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1 INTRODUCTION 

The solution of inverse reliability problems aims at 
determining the unknown design parameters such 
that the prescribed reliability indices are attained.  
One way to solve the inverse reliability problems is 
through trial and error procedure, using a forward re-
liability method like first-order reliability method 
(FORM) and varying the design parameters until the 
achieved reliability index matches the required target 
(Li and Foschi, 1998).  However, the trial and error 
procedures are inefficient and involve difficulties re-
sulting from repetitive forward reliability analysis.  
Even though the forward reliability analysis using 
SORM may be accurate (in which the second-order 
sensitivities of the function are required), the 
SORM-based inverse reliability analysis is rather 
difficult to develop (Lee et al., 2008).   

Lee and Kwak (1987) developed an inverse relia-
bility formulation for low probability failure design.  
Winterstein et al. (1993) developed an inverse first-
order reliability method (inverse FORM) and uti-
lized this method for the estimation of design loads 
associated with specified target reliability levels in 
offshore structures.  An extension of the method was 
developed by Der Kiureghian et al. (1994) for gener-
al limit state functions.  To overcome the drawbacks 
of the inverse FORM, Cheng et al. (2007) proposed 
an artificial neural network (ANN)-based inverse 
FORM.  Cheng and Li (2009) adopted a polynomial-
based response surface method to improve the accu-

racy than ANN-based inverse FORM.  In most of the 
works cited above, the inverse reliability problem is 
either solved by using sampling techniques or by us-
ing inverse-FORM.  As an alternative, Lee et al. 
(2008) proposed an inverse reliability analysis me-
thod for reliability-based design optimization 
(RBDO) of nonlinear and multi-dimensional systems 
by developing the most probable point (MPP)-based 
dimension reduction method (DRM).  

Traditionally, inverse reliability methods require 
complete statistical information of uncertainties.  
These uncertainties are treated stochastically and as-
sumed to follow certain probability distributions.  
However, in many practical engineering applica-
tions, the distributions of some random variables 
may not be precisely known or uncertainties may not 
be appropriately represented with probability distri-
butions.  Consequently, an alternative category, 
namely the non-probabilistic approach (Ben-Haim, 
1995), has been rapid developed for describing un-
certainty with incomplete statistical information by a 
fuzzy set or a convex set. In the fuzzy set me-
thod (Möller and Beer, 2004), the fuzzy failure prob-
ability of structures is assessed based on membership 
function representation of the observed/ measured 
inputs.  However all the methods discussed above 
consider either random variables or fuzzy input, but 
do not accommodate a combination of both types of 
variables.  Hence there is considerable interest in de-
veloping efficient methods for dealing with prob-
lems comprising of mixed uncertain variables.   
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In the design problem with both statistical ran-
dom variables and fuzzy variables, if the random va-
riables are converted into fuzzy variables by generat-
ing membership functions, the method may yield a 
design that is too conservative because treating the 
random variables as fuzzy variables loses accuracy 
of the uncertainties.  On the other hand, treating 
fuzzy variables as random variables by adopting ap-
proximate probability distributions may lead to an 
unreliable optimum design.   

Therefore, in this paper a novel solution proce-
dure for inverse reliability problems with implicit re-
sponse functions without requiring the derivatives of 
the response functions with respect to the uncertain 
variables, is proposed to determine the unknown de-
sign parameters such that prescribed reliability in-
dices are attained in the presence of mixed uncertain 
(both random and fuzzy) variables.   

2 CONCEPT OF HIGH DIMENSIONAL MODEL 
REPRESENTATION 

High Dimensional Model Representation (HDMR) 
is a general set of quantitative model assessment and 
analysis tools for capturing the high-dimensional re-
lationships between sets of input and output model 
variables (Chowdhury and Rao, 2008).  It approx-
imates multivariate functions in such a way that the 
component functions of the approximation are or-
dered starting from a constant and gradually ap-
proaching to multi-variance as we proceed along the 
terms like first-order, second-order and so on.  Prac-
tically for most well-defined physical systems, only 
relatively low order correlations of the input va-
riables are expected to have a significant effect on 
the overall response.  HDMR expansion utilizes this 
property to present an accurate hierarchical represen-
tation of the physical system (Rabitz and Alis, 1999; 
Rao and Chowdhury, 2008; Sobol, 2003).   

Degree of accuracy of reliability estimation de-

pends on the accurate representation of the limit 

state/performance function.  Computational com-

plexity for the generation of response surface of im-

plicit limit state/performance function arises due to 

increase in number of input variables, while using 

conventional response surface in conjunction with 

design of experiments.  The concept of HDMR ex-

pansions is introduced here for the purpose of ap-

proximating the limit state/performance function 

most accurately and efficiently, when the number of 

input variables is large. 

Let the N dimensional vector 

 1 2, , , Nx x xx  represent the input variables of 

the model under consideration, and the response 

function as ( )g x .  Since the influence of the input 

variables on the response function can be indepen-

dent and/or cooperative, HDMR expresses the re-

sponse ( )g x  as a hierarchical correlated function 

expansion in terms of the input variables as 
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Where, 0g  is a constant term representing the ze-

roth-order component function or the mean response 

of ( )g x .  The function ( )i ig x  is a first-order term 

expressing the effect of variable ix  acting alone, al-

though generally nonlinearly, upon the output ( )g x .  

The function  
1 2 1 2

,i i i ig x x  is a second-order term 

which describes the cooperative effects of the va-

riables 
1i

x  and 
2i

x  upon the output ( )g x .  The higher 

order terms give the cooperative effects of increasing 

numbers of input variables acting together to influ-

ence the output ( )g x .  The last term 

 12, , 1 2, , ,N Ng x x x  contains any residual depen-

dence of all the input variables locked together in a 

cooperative way to influence the output ( )g x .   

Once all the relevant component functions in Eq-

uation 1 are determined and suitably represented, 

then the component functions constitute HDMR, 

thereby replacing the original computationally ex-

pensive method of calculating ( )g x  by the computa-

tionally efficient model.  Usually the higher order 

terms in Equation 1 are negligible such that HDMR 

with only low order correlations to second-order, 

amongst the input variables are typically adequate in 

describing the output behavior. This has been veri-

fied in a number of computational studies where 

HDMR expansions up to second-order are often suf-

ficient to describe the outputs of many realistic sys-

tems.  Therefore it is expected that HDMR expan-

sion converges very rapidly. 

With cut-HDMR method, first a reference point 

 1 2, , , Nc c cc  is defined in the variable space.  

In the convergence limit, cut-HDMR is invariant to 

the choice of reference point c .  In practice, c  is 

chosen within the neighborhood of interest in the in-

put space.  The expansion functions are determined 

by evaluating the input-output responses of the sys-

tem relative to the defined reference point c  along 

associated lines, surfaces, sub-volumes, etc. (i.e. 

cuts) in the input variable space.  This process re-
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duces to the following relationship for the compo-

nent functions in Equation 1,  

 0g g c , (2) 

    0, i

i i ig x g x g c , (3) 
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Where,    1 2 1 1, , , , , , , ,i

i i i i Ng x g c c c x c c c  

denotes that all the input variables are at their refer-

ence point values except ix .  The 0g  term is the out-

put response of the system evaluated at the reference 

point c .  The higher order terms are evaluated as cuts 

in the input variable space through the reference 

point.  Therefore, each first-order term  i ig x  is 

evaluated along its variable axis through the refer-

ence point.  Each second-order term  
1 2 1 2

,i i i ig x x  is 

evaluated in a plane defined by the binary set of in-

put variables 
1 2
,i ix x  through the reference point, etc.  

The process of subtracting off the lower order ex-

pansion functions removes their dependence to as-

sure a unique contribution from the new expansion 

function.  Considering terms up to first-order in Eq-

uation 1 yields,  

   0 2

1

N

i i

i

g g g x
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  x R . (5) 

Substituting Equations 2 and 3 into Equation 5 leads 

to; 
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Now consider first-order approximation of ( )g x , 
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Comparison of Equations 6 and 7 indicates that 

the first-order approximation leads to the residual er-

ror     2g g x x R , which includes contributions 

from terms of two and higher order component func-

tions.  The notion of 0
th

, 1
st
, etc. in HDMR expan-

sion should not be confused with the terminology 

used either in the Taylor series or in the conventional 

least-squares based regression model.  It can be 

shown that, the first order component function 

 i ig x  is the sum of all the Taylor series terms 

which contain and only contain variable ix .  Hence 

first-order HDMR approximations should not be 

viewed as first-order Taylor series expansions nor do 

they limit the nonlinearity of ( )g x .   

Furthermore, the approximations contain contri-

butions from all input variables.  Thus, the infinite 

number of terms in the Taylor series is partitioned 

into finite different groups and each group corres-

ponds to one cut-HDMR component function.  

Therefore, any truncated cut-HDMR expansion pro-

vides a better approximation and convergent solution 

of ( )g x  than any truncated Taylor series because the 

latter only contains a finite number of terms of Tay-

lor series.  Furthermore, the coefficients associated 

with higher dimensional terms are usually much 

smaller than that with one-dimensional terms.  As 

such, the impact of higher dimensional terms on the 

function is less, and therefore, can be neglected.  

Compared with the FORM and SORM which retain 

only linear and quadratic terms, respectively, first-

order HDMR approximation ( )g x  provides more 

accurate representation of the original implicit limit 

state/performance function ( )g x .   

3 INVERSE STRUCTURAL RELIABILITY 
ANALYSIS USING HDMR AND FFT  

The objective of the inverse reliability analysis using 

HDMR and FFT is to find a new MPP, denoted 

by *

HDMRx , which will be then used in the subsequent 

iteration of analysis.  The proposed computational 

procedure involves the following three steps: estima-

tion of failure probability in presence of mixed un-

certain variables, reliability index update, and MPP 

update.   

Let the Ndimensional input variables vector 

 1 2, , , Nx x xx , which comprises of r  number of 

random variables and f  number of fuzzy variables 

be divided as,  1 2 1 2, , , , , , ,r r r r fx x x x x x  x  

where the sub-vectors 1 2{ , , , }rx x x  and 

1 2{ , , , }r r r fx x x    respectively group the random 

variables and the fuzzy variables, with N r f  .  

Then the first-order approximation of ( )g x  in Equa-

tion 7 can be divided into three parts, the first part 

with only the random variables, the second part with 

only the fuzzy variables and the third part is a con-

stant which is the output response of the system eva-

luated at the reference point c , as follows.   
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The joint membership function of the fuzzy va-

riables part is obtained using suitable transformation 

of the variables  1 2, , ,r r Nx x x 
 and interval 

arithmetic algorithm.  Using this approach, the min-

imum and maximum values of the fuzzy variables 

part are obtained at each  -cut.  Using the bounds 

of the fuzzy variables part at each  -cut along with 

the constant part and the random variables part in 

Equation 8, the joint density functions are obtained 

by performing the convolution using FFT in the ro-

tated Gaussian space at the MPP, which upon inte-

gration yields the bounds of the failure probability.   

3.1 Transformation of Fuzzy Variables 

Optimization techniques are required to obtain the 

minimum and maximum values of a nonlinear re-

sponse within the bounds of the interval variables.  

This procedure is computationally expensive for 

problems with implicit limit state functions, as opti-

mization requires the function value and gradient in-

formation at several points in the iterative process.  

But, if the function is expressed as a linear combina-

tion of interval variables, then the bounds of the re-

sponse can be expressed as the summation of the 

bounds of the individual variables.  Therefore, fuzzy 

variables part of the nonlinear limit state function in 

Equation 8 is expressed as a linear combination of 

intervening variables by the use of first-order 

HDMR approximation in order to apply an interval 

arithmetic algorithm, as follows  

  1 2

1

,
N

i

i f

i r

g x z z z
 

    c , (9) 

where,  i i i iz x


     is the relation between the 

intervening and the original variables with   being 

order of approximation taking values 1   for linear 

approximation, 2   for quadratic approximation, 

3   for cubic approximation, and so no.  The 

bounds of the intervening variables can be deter-

mined using transformations.  If the membership 

functions of the intervening variables are available, 

then at each  -cut, interval arithmetic techniques 

can be used to estimate the response bounds at that 

level.  Similar transformation techniques for mem-

bership functions to obtain minimum and maximum 

values of a nonlinear response at each  -cut are 

adopted by Adduri and Penmetsa (2008), except that 

a second-order response surface model is used for 

the original response approximation, however the 

proposed first-order HDMR provides better approx-

imation ( )g x  of the original limit state function 

( )g x .   

The use of transformation techniques facilitates the 

determination of the minimum and maximum values 

of the fuzzy variables that correspond to the extreme 

values of the response at a particular level without 

the use of optimization techniques in addition to fix-

ing the dependency issues associated with nonlinear 

functions.  Moreover, this is an analytical procedure 

in which there is little room for errors. 

3.2 Estimation of Failure Probability using FFT 

Concept of FFT can be applied to the problem if the 

limit state function is in the form of a linear combi-

nation of independent variables and when either the 

marginal density or the characteristic function of 

each basic random variable is known.  Even if the 

function of the basic variables is nonlinear, an ap-

propriate transformation of the basic random va-

riables could yield a linear function of independent 

random variables.  To achieve this linear function, 

the limit state function can be approximated by using 

a first-order Taylor series expansion, but this gives 

very poor accuracy.  In the present study HDMR 

concepts are used to express the random variables 

part along with the values of the constant part and 

the fuzzy variables part at each  -cut, which de-

pends on  1 2, , , r

rx x x  , as a linear combina-

tion of lower order component functions.  The steps 

involved in the proposed method for failure proba-

bility estimation as follows: 

(i) If  1 2, , ,
T r

ru u u u  is the standard 

Gaussian variable, let  * * * *

1 2, , ,
T

ru u uu  be 

the MPP or design point, determined by a 

standard nonlinear constrained optimization.  

The MPP has a distance HL , which is com-

monly referred to as the Hasofer–Lind reliabil-

ity index.  Construct an orthogonal matrix 
r rR  whose rth column is 

* *

HL α u , 

i.e., 
*

1[ | ]R R α  where 
1

1

r r R  satisfies 
* 1 1

1 0T r  α R .  The matrix R can be ob-

tained, for example, by Gram–Schmidt ortho-

gonalization.  For an orthogonal transforma-

tion u = Rv .  Let 1 2{ , , , }T r

rv v v v  be 

the rotated Gaussian space with the associated 
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MPP  * * * *

1 2, , ,
T

rv v vv .  Note that in the ro-

tated Gaussian space the MPP is 
* {0,0, , }T

HL v .  The transformed limit 

state function ( )g v  therefore maps the random 

variables along with the values of the constant 

part and the fuzzy variables part at each  -cut, 

into rotated Gaussian space v .  First-order 

HDMR approximation of ( )g v  in rotated 

Gaussian space v  with  * * * *

1 2, , ,
T

rv v vv  as 

reference point  can be represented as follows: 

   
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v

. (10) 

(ii) In addition to the MPP as the chosen reference 

point, the accuracy of first-order HDMR ap-

proximation in Equation 10 may depend on the 

orientation of the first 1r   axes.  In the 

present work, the orientation is defined by the 

matrix R .   

(iii) Since the terms  * * * *

1 1 1, , , , , ,i i i rg v v v v v   are 

the individual component functions and are in-

dependent of each other, Equation 10 can be 

rewritten as,  

   *

1

,
r

i

i

i

g a g v


 v v , (11) 

where    *1a r g   v . 

(iv) New intermediate variables are defined as 

 *, i

i iy g v v . (12) 

(v) The purpose of these new variables is to trans-

form the approximate function into the follow-

ing form  

  1 2 rg a y y y    v . (13) 

(vi) Due to rotational transformation in v-space, 

component functions iy  in Equation 10 are 

expected to be linear or weakly nonlinear func-

tion of random variables iv .  In this work both 

linear and quadratic approximations of iy  are 

considered.   

(vii) Consider i i i iy b c v   for linear and  
2

i i i i i iy b c v e v    for quadratic approxima-

tions. The coefficients ib  , ic   and 

ie   (non-zero) are obtained by least-squares 

approximation from exact or numerically si-

mulated conditional responses 

      1 * 2 * *, , , , , ,
T

i i n i

i i ig v g v g vv v v  at n  

sample points along the variable axis iv .  Then 

Equation 13 results in respectively for linear 

and quadratic approximations as 

   
1

r

i i i

i

g a b c v


  v , (14) 

and 

   2

1

r

i i i i i

i

g a b c v e v


   v . (15) 

(viii) Since iv  follows standard Gaussian distribu-

tion, marginal density of the intermediate va-

riables iy  can be easily obtained by simple 

transformation (using chain rule).   

   
i i

i
Y i V i

i

dv
p y p v

dy
 . (16) 

(ix) Now the approximation is a linear combination 

of the intermediate variables iy .  Therefore, 

the joint density of ( )g v , which is the convo-

lution of the individual marginal density of the 

intervening variables iy , can be expressed as 

follows:  

       
1 21 2 rY Y Y rG

p g p y p y p y    , (17) 

where ( )
G

p g  represents joint density of the 

transformed limit state function ( )g v . 

(x) Applying FFT on both sides of Equation 17, 

leads to 

1

2

1

2

( ) ( )

        ( ) ( )
r

YG

Y Y r

FFT p g FFT p y

FFT p y FFT p y

      

        

.(18) 

(xi) By applying inverse FFT on both side of Equa-

tion 18, joint density of the limit state function 

( )g v  is obtained. 

(xii) The probability of failure is given by the fol-

lowing equation 

0

HDMR ( )F G
P p g dg



  . (19) 
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(xiii) After computing the probability of failure 
HDMR

FP  using coupled HDMR-FFT technique, 

the corresponding reliability index HDMR  can 

be obtained by 

 1 HDMR

HDMR FP   , (20) 

where     is the cumulative distribution 

function of a standard Gaussian random varia-

ble.   

3.3 Reliability Index Update Procedure 

As expected it is very likely that the HDMR  is not the 

same as the target reliability index  1 Tar

t FP   , 

and hence, using the difference between these two 

reliability indices, a recursive formula is obtained as 

     1

HDMR

k k

t


      , (21) 

where 
 k

  is the reliability index at the current step, 

with  0

t   at the initial step. 

3.4 MPP Update Procedure 

The updated MPP is approximated as  

 

 

 

 

1 1

* * * *

1 1or
k k

k k k kk k

 

 

 
 
 

u u v v , (22) 

The updated MPP obtained through Equation 22 is 

called the coupled HDMR-FFT based MPP, denoted 

by 
*

HDMRu  in U -space or 
*

HDMRx  in X -space.   

3.5 Detailed Algorithm of Proposed Computational 
Procedure 

The various steps involved in the proposed computa-

tional procedure for inverse reliability problems with 

implicit response functions in the presence of mixed 

uncertain (both random and fuzzy) variables is as 

follows: 

(i) Find MPP in the rotated Gaussian space using 

a given reliability index 
 k

 . 

(ii) Calculate the probability of failure 
HDMR

FP  and 

the corresponding reliability index HDMR  us-

ing coupled HDMR-FFT technique. 

(iii) Using Equations 21 and 22 respectively, up-

date the reliability index from 
 k

  to 
 1k

  and 

MPP from 
*

ku  (
*

kv )  to 
*

1ku  (
*

1kv ). 

(iv) Find a new coupled HDMR-FFT based MPP 
*

HDMRx . 

(v) Compare 
*

HDMRx  and *
x . 

(vi) Repeat the above steps until converged. 

(vii) Using the minimum and maximum values of 

the fuzzy variables part (Equation 8) at each 

 -cut, the bounds of the design variables can 

be obtained by adopting the above procedure.  

4 NUMERICAL EXAMPLES 

Three numerical examples involving explicit hypo-

thetical mathematical functions and implicit func-

tions from structural mechanics problems are pre-

sented to illustrate the performance of the proposed 

inverse reliability method.  In the present work, 

transformation of fuzzy variables and FFT are con-

ducted in conjunction with HDMR based approxi-

mation.  To obtain  the approximation of the HDMR 

component functions of fuzzy variables part of the 

nonlinear limit state function in Equation 8, n  sam-

ple points iLx ,  ( 3) ( 1)iM iM iLx n x x n    , 

 ( 5) ( 1)iM iM iLx n x x n    , …, iMx , …, 

( 5)( ) ( 1)iM iU iMx n x x n    , 

( 3) ( ) ( 1)iM iU iMx n x x n    , iUx  are deployed 

along axis of each of the fuzzy variable ix  having 

triangular membership function with the triplet 

number [ , , ]iL iM iUx x x .   

Similarly to obtain the HDMR component func-

tions of random variables part of the nonlinear func-

tion, n  sample points ( 1) 2i in   , 

( 3) 2i in   , …, i , …, ( 3) 2i in   , 

( 1) 2i in    are deployed along axis of each of 

the random variable ix  with mean i  and standard 

deviation i .  Sampling schemes for HDMR ap-

proximation of a function having one variable ( x ) 

and two variables ( 1x and 2x ) are shown in Figures 

1(a) and 1(b) respectively.  

If N and n  respectively denote  the number of 

uncertain variables,  the number of sample points 

taken along each of the variable axis, then using 

first-order HDMR approximation the total cost of 
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original function evaluation entails a maximum of 

 1 1N n    by the proposed method.  The 

efficiency and robustness of the proposed method is 

expected to increase with increase in the complexity 

of the structure, number of uncertain variables.   

 

 
(a) 

 

(b) 

Figure 1. Sampling scheme for first-order HDMR: 

(a) For a function having one variable (x); and 

(b) For a function having two variables (x1 and x2) 

4.1 Hypothetical Limit State Function with Two 
Variables 

This example considers a hypothetical limit state 

function with two random variables of the following 

form, studied earlier by Du et al (2004): 

     

 

2 3

2 1 1

4

1

0.25 0.25

0.25 4

g x x x

x

    

  

x
, (23) 

where  1 0.0,1.0x N  and  2 0.0,1.0x N ; 

 ,N    stands for a normal distribution with mean 

  and standard deviation  .  Here our interest is to 

find the design variables (MPP) 
*

1x  and 
*

2x , such that 

the target reliability index 3.0 t  (which 

corresponds to a failure probability 0.0013FP  ) is 

achieved. 

The limit state function given in Equation 23 is 

approximated using first-order HDMR by deploying 

n  sample points along each of the variable axis, and 

taking (0,0)c  as reference point.  Using the 

proposed inverse reliability method in conjunction 

with linear and quadratic approximations the effect 

of number of sample points is studied by varying n  

from 3 to 9.  Table 1 presents the comparison of the 

function ( )g x  value, 
*

1x  and 
*

2x  values at the target 

reliability index, obtained using the proposed 

method with the values reported by Du et al. (2004) 

and the Sequential Quadratic Programming (SQP).   

Table 1 also presents the computational effort in 

the number of function evaluations required for each 

method.  It can be observed that 7n   in 

conjunction with quadratic approximation provides 

the optimum number of function calls with 

maximum accuracy in obtaining the design 

variables.  Table 1 clearly demonstrates the 

computational efficiency of the proposed 

methodology.   

 Table 1. Comparison of the function values  

Method *
x  

*( )g x  
No. of fn. 

evaluations 

Du et. al.(2004) (1.3503, 

2.6789) 

0.2440 20 

SQP (1.5270, 

2.9962) 

0.9332 28 

Lin. Apprx. 

( 3n  ) 
(1.2569, 

2.7551) 

0.2381 5 

Quad. Apprx. 

( 3n  ) 
(1.2345, 

2.7793) 

0.2366 5 

Lin. Apprx. 

( 5n  ) 
(1.2963, 

2.7349) 

0.2234 9 

Quad. Apprx. 

( 5n  ) 
(1.2548, 

2.7724) 

0.2228 9 

Lin. Apprx. 

( 7n  ) 
(1.3845, 

2.6886) 

0.2207 13 

Quad. Apprx. 

( 7n  ) 
(1.3119, 

2.7512) 

0.1953 13 

Lin. Apprx. 

( 9n  ) 
(1.3119, 

2.7512) 

0.1953 17 

Quad. Apprx. 

( 9n  ) 
(1.3119, 

2.7512) 

0.1953 17 

4.2 Hypothetical Limit State Function with Eight 
Variables 

This example considers a hypothetical limit state 

function with mixed uncertain variables of the 

following form: 

 
 

2

2 3 4 5 6 2

1 8 3 5

7

x x x x x
g x x x x

x

 
    

 
 

x . (24) 

The properties of mixed uncertain variables are 

presented in Table 2.  The target reliability index is 

set as 4.75 t  (which corresponds to a failure 

probability
61.0171 10FP   ).  The limit state 

x 

c xc

1x

2x

c
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function given in Equation 24 is approximated using 

first-order HDMR by deploying n  sample points 

along each of the variable axis and taking 

respectively the mean values and nominal values of 

the random and fuzzy variables as reference point c . 

Table 2. Properties of the uncertain variables  

Variable Mean SD Type Fuzzy 

1x  1.12 0.2 Normal  

2x  1.77 0.2 Normal  

3x  - - - [0.32,  0.41,  0.50]  

4x  1 0.2 Normal  

5x  - - - [0.16,  0.20,  0.24]  

6x  - - - [0.07,  0.10,  0.13]  

7x  - - - [1.0,  1.5,  2.0]  

8x  0.1 0.01 Normal  

The approximated limit state function is divided 

into two parts, one with only the random variables 

along with the value of the constant part, and the 

other with the fuzzy variables.  The joint 

membership function of the fuzzy part of 

approximated limit state function is obtained using 

suitable transformation of the fuzzy variables.   

Unlike the case when all uncertain variables are 

random, the presence of fuzzy variables along with 

random variables, leads to the membership function 

of MPP (
* * *

1 2 4, ,x x x  and
*

8x ) instead of having a unique 

value at the target reliability index.  This is similar to 

the concept applied in reliability analysis, where the 

presence of interval variables results in the bounds 

on reliability or membership function of reliability, 

instead of having a unique value.   

Figures 2(a)2(d) respectively show the 

membership functions of 
* * *

1 2 4, ,x x x  and 
*

8x  values at 

the target reliability index estimated by the proposed 

method using linear and quadratic approximations.  

The effect of number of sample points is studied by 

varying n  from 3 to 9 in obtaining the membership 

function of design variables.  In Figures 2(a)2(d), it 

can be observed that the membership functions of 
* * *

1 2 4, ,x x x  and 
*

8x  values estimated by the proposed 

method using 7n   and 9 are overlapping each 

other.  

4.3 12-Stories and 3-Bays Linear Frame Structure 

A linear frame structure with twelve stories and 

three bays as shown in Figure 3 is considered.  The 

cross sectional areas 1A  to 5A  are assumed to be log-

normally distributed random variables with mean 

values of 0.25, 0.16, 0.36, 0.2 and 0.15, and standard 

deviation values of 0.025, 0.016, 0.036, 0.02 and 

0.015 respectively.  The horizontal load P  is treated 

as fuzzy with a triplet of [22.5,  30,  37.5] .   

 

 

 

 

 

 

 

 
(a) 

 

 

 

 

 

 

 

 

 
(b) 

 

 

 

 

 

 

 

 

 
(c) 

 

 

 

 

 

 

 

 

 
(d) 

Figure 2. Membership function of design variables: (a) 
*

1x ; (b) 
*

2x ; (c) 
*

4x ; and (d) 
*

8x  

The sectional moments of inertia are expressed as 
2

i i iI A   ( 1 5i   , 1 2 3, , 0.083    , 4 0.267  , 



                         Electronic Journal of Structural Engineering 12(1) 2012 
 

35 

 

5 0.2  ).  The Young’s modulus is treated as 

deterministic. Element types are indicated in Figure 

3.  In this study, the functional relationship to define 

the horizontal displacement at the top of the frame 

is: 

  lim, ;   1 5i hg A P u i     , (25) 

where lim  is taken as 0.1 m.  Our interest is to find 
*( 1 5)iA i   , such that the target reliability index 

1.4391t   ( 27.5058 10FP   ) is achieved.  The 

implicit limit state function given in Equation 25 is 

approximated using first-order HDMR by deploying 

n  sample points along each of the variable axis and 

taking respectively the mean values and nominal 

values of the random and fuzzy variables as 

reference point c .   

 

 

 

 

 

 

 

 

 

 

Figure 3. 12-story frame structure 

The approximated limit state function is divided 

into two parts, one with only the random variables 

along with the value of the constant part, and the 

other with the fuzzy variables.  The joint 

membership function of the fuzzy part of 

approximated limit state function is obtained using 

suitable transformation of the fuzzy variables.   

Using the proposed inverse reliability method in 

conjunction with linear and quadratic 

approximations membership functions of 
*( 1 5)iA i    values at the target reliability index are 

estimated, and shown in Figures 4(a)4(e).  In 

addition, the effect of number of sample points is 

studied by varying n from 3 to 9, and it can be 

observed from the Figures 4(a)4(e) that the 

membership functions of 
*( 1 5)iA i    values 

estimated by the proposed method using 7n   and 9 

are overlapping each other. 
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Figure 4. Membership function of design variables:  

(a) 
*

1A ; (b) 
*

2A ; (c) 
*

3A ; (d) 
*

4A ; and (e) 
*

5A  
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6 SUMMARY AND CONCLUSIONS 

An efficient, accurate, robust solution procedure 

alternative to existing inverse reliability methods is 

proposed for nonlinear problems with implicit 

response functions, which can be used to determine 

multiple unknown design parameters such that 

prescribed reliability indices are attained in the 

presence of mixed uncertain variables.  The 

proposed method avoids the requirement of the 

derivatives of the response functions with respect to 

the uncertain variables.  The proposed computational 

procedure involves three steps: (i) probability of 

failure calculation using High Dimensional Model 

Representation (HDMR) for the limit state function 

approximation, transformation technique to obtain 

the contribution of the fuzzy variables to the 

convolution integral, and fast Fourier transform for 

solving the convolution integral, (ii) reliability index 

update, and (iii) most probable point update.  The 

methodology developed is versatile, hence can be 

applied to highly nonlinear or multi-parameter 

problems applicable involving any number of fuzzy 

variables and random variables with any kind of 

distribution.  The accuracy and efficiency of the 

proposed method is demonstrated through three 

numerical examples.  In addition, a parametric study 

is conducted with respect to the number of sample 

points used in approximation of HDMR component 

functions and its effect on the estimated solution is 

investigated.  Very small number of sample points 

should be avoided as approximation may not capture 

the nonlinearity outside the domain of sample points 

and thereby affecting the estimated solution.   
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