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1 INTRODUCTION  

 

In the past, various optimization techniques have 
been employed in the context of finite element mod-
el updating for structural damage severity estimation 
(Sohn et al. 2004, Mottershead & Friswell 1993). 
However, ill-conditioning and non-uniqueness prob-
lems are often encountered with the solution of in-
verse problems for determining the damage parame-
ters of a model for given measured data due to 
factors such as measurement noise, modelling error, 
incompleteness of the measurement data, low level 
of sensitivity of the response parameters to localized 
damage, high-dimensionality and non-linearity. Var-
ious researchers have proposed powerful optimiza-
tion techniques in order to overcome the ill-
conditioning and non-uniqueness problems often en-
countered in finite element model parameter updat-
ing and subsequent damage severity estimation of 
large-scale structures (Jaishi et al. 2007, Jaishi & 
Ren 2007, Levin & Lieven 1998, Friswell et al. 
1998). Multi-stage multi-objective optimization 
techniques have been proposed for finite element 
model updating in order to localize and quantify 
damage in large-scale structures subjected to severe 
damage condition states for damage identification in 
larger-scale structures (Perera & Ruiz 2008, 2007).  

 

In order to overcome the aforementioned ill-
conditioning difficulties, a two-stage damage identi-

fication strategy that combines non-model based and 
model-based damage identification approaches is 
proposed for structural damage detection, localiza-
tion and severity estimation (Bayissa & Haritos 
2009).  

In this paper, the performance characteristics of a 
standard deterministic nonlinear optimization as well 
as a stochastic global optimization technique for 
solving the inverse problem (i.e., inverse identifica-
tion of structural damage severity) when imple-
mented in the context of a two-stage structural dam-
age identification process are investigated. Damage 
localization information acquired from the first stage 
of the damage identification process is employed for 
quantification of damage severity via minimization 
of a cost function expressed in terms of a damage-
sensitive statistical response parameter. Consequent-
ly, the comparative efficiency of the two optimiza-
tion methods, namely the standard nonlinear least-
squares and adaptive simulated annealing global sto-
chastic optimization techniques, are systematically 
demonstrated on numerical experimental data ob-
tained from a simply supported RC beam model sub-
jected to a single as well as multiple damage condi-
tion states.  

2 OPTIMIZATION ALGORITHMS FOR 
SEVERITY ESTIMATION  

 
In this section, the theoretical background regarding 
structural damage severity prediction as conducted 
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using the two types of optimization technique in the 
context of two-stage structural damage identification 
approach are presented. 

 

2.1 Nonlinear least-squares optimization  

The nonlinear least-squares (NLS) optimization 
method employs the finite-differencing gradient 
based iterative search techniques which comprises of 
two main algorithms, namely Gauss-Newton and 
Levenberg-Marquardt (refer to MATLAB

®
 User’s 

manual, version 6.5). The routine lsqnonlin imple-
mented in the MATLAB optimization toolbox is 
used to perform the nonlinear least-squares fit on the 
output of the objective function, which is defined in 
terms of the sum-of-squares of the scalar distance 
between the calculated and measured responses. 

2.2 Adaptive simulated annealing global 
optimization 

In general, simulated annealing (SA) algorithms 
are non-homogeneous variants of Monte Carlo im-
portance-sampling techniques consisting of a “tem-
perature” schedule for efficient sequential random 
searching and global optimization of non-convex 
and non-differentiable cost-functions (Kirkpatrick 
1983). The long computation time required for ex-
ecution of standard SA algorithms has prompted re-
searchers to develop variants of SA that utilize a 
faster annealing schedule in order to satisfy the stop-
ping criterion of the optimization function. The ASA 
algorithm is found to provide the best global fit to a 
nonlinear constrained non-convex cost-function over 
multi-dimensional space using an importance sam-
pling technique. The algorithm permits an annealing 
schedule for "temperature" T decreasing exponen-
tially in annealing-time and permits adaptation to 
changing sensitivities in the multi-dimensional pa-
rameter-space through introduction of re-annealing 
(Ingber 1993). The ASA algorithm is reported to 
have outperformed various global optimization me-
thods and other variants of SA such as Boltzmann 
annealing and fast annealing (Ingber 1996).  

In order to conduct global optimization of a cost-
function coded in the MATLAB environment for the 
research performed in this paper, an open ASA 
source code written in the C-language (Ingber 1993) 
was utilized along with a MATLAB gateway func-
tion known as ASAMIN to create C MEX-files 
(http://www.igi.tugraz.at/lehre/MLA/WS01/asamin.
html). 
 

2.3  Convergence Criteria 

In this study, the estimation of structural damage 
severity is conducted by implementing both NLS and 

ASA algorithms on a cost-function defined in terms 
of the sum-of-squares of the scalar distance between 
the calculated and measured MSV, given by:  
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where Nd is the number of measurement degrees of 
freedom, β is a set of structural model parameters, 
Nδr are the number of frequency bandwidths used, 

r

j

  is the MSV obtained from the potentially dam-
aged condition states at the j

th
 measurement grid 

point, )(kr

j

  is the MSV of the undamaged condi-
tion state at the j

th
 model degree of freedom,   is a 

mapping matrix that transforms the MSVs obtained 
for the full model degrees of freedom to those asso-
ciated with the measurement grid points, only.  

The general optimization process implemented 
for the quantification of structural damage include: 
initiation of the optimization variables (i.e. stiffness 
parameters); specification of the optimization para-
meter options; upper and lower limits for global op-
timization variables; calling the MATLAB gateway 
function, ASAMIN;  calling the global optimization 
routine, ASA; calling the routine lsqnonlin; calling 
the finite element model based MATLAB function 
to compute the “damage-sensitive” response parame-
ter (see Equations (8)-(11)); computation of the cost-
function defined in Equation (1); and quantification 
of damage severity based on the optimal model pa-
rameter outputs of the converged and valid solution. 
The sequential flow diagram of the optimization 
process implemented for the estimation of damage 
severity is presented in Fig. 1.  

In general, the structural equation of motion for a 
linearly vibrating damped multi-degree-of-freedom 
system subjected to arbitrary excitation forces can be 
described in a matrix form, as follows: 

  F(t)u(t)ΔKK(t)uC(t)uM    (2) 

where M, C, and K are the mass, damping and stiff-
ness matrices, respectively, for pristine structural 
system. ΔK is the change in the stiffness matrix due 
to possible degradation in the structural condition. 

(t)u , (t)u  and u(t) are acceleration, velocity and dis-
placement response vectors, respectively; F(t) is the 
excitation force vector.  
 

In order to implement the proposed optimization 
tools, the structural model is first parameterized in 
terms of structural stiffness as an assembly of sub-
structures or element stiffness matrices assuming 
that damage affects only the stiffness properties of 
the structure, as follows: 

ΔKKK   (3) 
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Figure 1. Flowchart of the optimization algorithms imple-
mented. 

 
where K  is the assembled global stiffness matrix 
with possible stiffness damage conditions. The stiff-
ness degradation matrix can also be described in 
terms of the pristine structural element stiffness ma-
trix, as follows: 





nd

j

j

e

j k
1

KΔK   (4) 

where e

jK  is the stiffness matrix of the element (sub-
structure) j that contributes to the global stiffness 
matrix. nd is the number of degraded elements; jk  
is the stiffness parameter degradation indicator for 
element e whose values need to be determined, 
 10  jk , as follows: 
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where e

jK  and  e

jK  are the element stiffness matrices 
for pristine and degraded element e in the substruc-
ture j, respectively. In this study, the severity of 
stiffness degradation in the elements of various sub-
structures is defined, as follows (refer to Equation 
(5)): 
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where Dkj represent the predicted degradation in 
substructure j. e

jEI  is the flexural rigidity for the 
pristine element e in the substructure  j;  ejEI is the 
change in the flexural rigidity of element e in the 
substructure j. e

jE  is the change in the material 
stiffness of element e in the substructure  j and e

jE  is 

the material stiffness of the pristine element e for 
substructure j. The percentage of the prediction er-
ror, Err, is determined, as follows: 
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where p

jDk  and a

jDk  represent the predicted and the 
applied damage severity in substructure j, respective-
ly. 

2.4 Damage-sensitive response parameters  

In the past, statistical parameters known as the 
mean square values (MSVs) of the vibration re-
sponse signal and its derivatives have been identified 
as “damage-sensitive” parameters with significant 
advantages over commonly used non model-based 
damage identification methods (Loughlin & Cakrak 
2000, Lutes & Larsen 1990, Bayissa et al. 2008). 
The salient features attributed to their use include 
sensitivity to local and global damage and strong 
physical relationships with key structural dynamic 
properties. The MSVs in the time, spectral, modal 
and wavelet domains, respectively, can be obtained, 
as follows (Bayissa & Haritos 2009, 2007, Bayissa et 
al. 2008): 
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where 



r , 



ss, 



  and 



t, f
0

 are the MSVs in the time, 
spectral, modal and wavelet domains, respectively. 



y(t)  is a time series signal, 



y[tn ]  is an 



N  point se-
quence of )(ty , 



ryy(0) is the autocorrelation at zero 
time shift, T  is the time period. 



Syy() is the re-
sponse power spectral density (PSD), )(H  is the 
frequency response function (FRF), )(ppS  is the 
excitation power spectral density, )]([ rH is the di-
agonal matrix of the modal FRF,   is the excitation 
frequency. 



Q(,) represents the coefficients of the 
wavelet transforms, in which  and   are the scale 
and translation parameters, respectively.  

In this study, Equations (8)-(11) are employed for 
computation of the MSVs for damage severity esti-
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mation studies conducted with both the NLS and 
ASA optimization algorithms. 

3 NUMERICAL SIMULATION STUDIES  
 
In this section, the NLS and ASA optimization tech-
niques are demonstrated on the simply supported 
reinforced concrete beam shown in Fig. 2(a)-(b). The 
parameterized FE model of the beam is developed in 
a MATLAB toolbox (Ref. CALFEM 3.4 User’s ma-
nual) and meshed using two-dimensional beam ele-
ments resulting in 25 elements. Both single and var-
ious types of multiple damage conditions are 
introduced with severity levels ranging from 1%–
20%. The location and the severity level of the simu-
lated damage conditions at each element location are 
presented in Table 1. The material properties for the 
undamaged beam include a Young’s modulus of 
30GPa, mass density of 2400 kg/m3 and Poisson’s 
ratio of 0.25. Structural damage is simulated by re-
ducing the material stiffness and the level of severity 
induced is directly related to the percentage reduc-
tions adopted, (refer to Equation (6)). 

 
Table 1. Simulated structural damage conditions applied to the 
RC beam. 

Applied structural damage conditions (%) 

Single damage 
condition 

Multiple damage condition 

E7 E7     E13 E19 

1 1 1 1 
2 2 2 2 
5 5 5 5 

10 10 10 10 
15 15 15 15 
20 20 20 20 
- 10 20 10 

- 5 20 15 

 

 

 

 

 

 
Figure 2. FE model for a simply supported beam with damage 
locations indicated: (a) single damage (at element 13); (b) mul-
tiple damage (at elements 7, 13 and 19). 

 
 

In order to perform a comparative assessment of 
the robustness of the inverse damage severity esti-
mation algorithms adopted, the following two sets of 
structural damage identification data were consi-
dered: 

(i) An accurate numerical model and noise-free 
response data (full set of measurement grid 
points and complete set of  modes);  

(ii) An approximate numerical model and incom-
plete noisy response data (incomplete sets of 
both measurement grid points and modes). 

 

3.1 Using an accurate numerical model and noise-
free response data  

In this section, an error-free numerical model and 
noise-free response data obtained at a full set of grid 
points (see Fig. 2) using the first 10 flexural modes 
(i.e., natural frequencies and mode shapes and  a 
constant modal damping ratio of 0.01) are imple-
mented for damage severity prediction. The number 
of degrees of freedom of the model and the simu-
lated measurements were kept the same and a single 
frequency bandwidth (i.e., 1rN ) that encompassed 
the first 10 flexural modes was used for computation 
of the MSVs (see Equation (10)). Hence, the value 
of the transformation matrix for all degrees of free-
dom was taken to be 1, [1,....,1] T  . Finally, the 
MSVs obtained from the numerical experimental da-
ta were used along with the MSV computed from the 
FE model for the pristine structural condition state to 
solve the optimization problem (see Equation (1)). 
Consequently, the NLS and ASA optimization algo-
rithms were employed to inversely predict the stiff-
ness parameters for the different damage conditions. 

The results for single and multiple damage severi-
ty estimations obtained using noise-free response da-
ta are presented in Figs. 3–6 and Figs. 7–9, for NLS 
and ASA optimization, respectively. These results 
demonstrate that the standard NLS optimization 
technique is able to accurately determine different 
levels of damage induced on the beam as shown in 
Fig. 3 (for the single damage condition), Fig. 4 (for 
spatially uniform multiple damage states) and Figs. 5 
and 6 (for spatially non-uniform multiple damage 
states). Similarly, the ASA method is also found to 
accurately predict the single damage condition (Fig. 
7), spatially uniform multiple damage states (Fig. 8) 
and spatially non-uniform multiple damage states 
(Fig. 9) induced on the beam. Even though the re-
sults shown are only for the 5% to 20% damage level 
for the purpose of clarity of the Figures, both me-
thods were found to accurately estimate even the 1% 
damage level.  

Therefore, these results shows that both the stan-
dard NLS and ASA global optimization methods can 
be used to accurately predict the structural damage 
severity in a two-stage damage identification proce-
dure provided that the response data is free from 
measurement noise and the baseline numerical mod-
el is relatively accurate. 

 
 

 

E19 E13 E7 

L = 10m 

Reference point for excitation 

 
E13 

(a) 

(b) 
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Fig-

ure 3. Single damage severity estimation using NLS optimiza-
tion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Multiple regular damage severity estimation using 
NLS optimization. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Multiple irregular damage severity estimation using 
NLS optimization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Multiple irregular damage severity estimation using 
NLS optimization. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Single damage severity estimation using ASA optimi-
zation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 8. Multiple regular damage severity estimation using 
ASA optimization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Multiple irregular damage severity estimation using 
ASA optimization. 

3.2 An approximate numerical model with 
incomplete and noisy response data  

The investigation conducted in this section simulates 
a more realistic scenario in structural damage identi-
fication problems, where incompleteness in both the 
measurement points and modes is often coupled with 
measurement noise and numerical model uncertain-
ties.  

In order to simulate these conditions, (a) MSVs 
were computed only at half of the beam model nodes 
(or 13 measurement grid points); (b) only half of the 
flexural modes (or 5 modes) that were used in the 
previous case (section 3.1) were employed for com-
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putation of the MSVs using Equation (8); (c) Gaus-
sian random noise with magnitude ranging from 1% 
to 20% were added to the numerically simulated 
structural response data series prior to computation 
of the MSVs. In Figs. 10 (a)–(c), the finite element 
model nodes, the grid points at which MSVs were 
obtained from the simulated measurement data, the 
location of the induced structural damage and the 
substructure elements of the spare measurement grid 
points of the beam are presented. Moreover, a typical 
response PSD implemented for computation of 
MSVs and subsequent damage severity estimation is 
shown in Fig. 11. Finally, the actual damage severity 
estimation studies were conducted. Results are pre-
sented in sections 3.3 and 3.4, respectively, for the 
NLS and ASA optimization methods.  

 

 
 
Figure 10. FE model of the beam with damage locations and 
simulated measurement grid points indicated: (a) single damage 
condition (at model element 13); (b) multiple damage condition 
(at model element 7, 13 and 19); (c) substructure model (dam-
age is induced at substructure 4, 8 and 11).  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. A typical response PSD with incomplete number of 
modes and 20% noise level ensemble averaged over 10 sam-
ples. 

 

3.3 Discussion on damage severity estimation 
results from NLS method  

In this section, the performance of the NLS damage 
severity estimation method is investigated for more 
practical damage scenarios and the results obtained 
are presented in Tables 2–7. For a single damage 
condition, the results obtained using NLS optimiza-
tion show that this algorithm is capable of effective-
ly predicting the level of damage (i.e., loss of stiff-

ness) in the presence of significant noise levels, li-
mited number of measurement grid points and in-
complete vibration modes (Tables 2–4). The only 
exceptions are that for the very low 1% and 2% 
damage levels and the high 20% noise level, signifi-
cant prediction errors of about 14% and 64%, re-
spectively, were observed. 

On the other hand, the multiple (regular) damage 
severity estimation results obtained using the NLS 
optimization algorithm presented in Tables 5–7, 
show a more favourable situation. For the 5% noise 
level, more accurate predictions were obtained for 
both the 15% and 20% multiple damage levels, and 
reasonably accurate severity estimations were ob-
tained for the 5% multiple damage level. However, 
poor prediction results were obtained for the 10% 
multiple damage levels (Table 5). For the 10% noise 
level data, reasonably accurate prediction results 
were obtained for the 20% multiple damage condi-
tion while poor prediction results were obtained for 
5%,-10%-15% multiple damage level state (Table 
6). In the case of the 20% noise level data, prediction 
results with acceptable accuracy were obtained for 
10% and 20% multiple damage levels while poor 
prediction results were obtained for the 5% and 15% 
multiple damage levels (Table 7). 

Therefore, compared to the single damage condi-
tion, multiple damage severity conditions are found 
to affect the damage identification capability of the 
NLS optimization algorithm in the presence of mea-
surement noise and incompleteness in the response 
data. Hence, the multiple damage severity estimation 
results presented reveal the limitations in the capa-
bility of the deterministic optimization technique and 
the accompanying significant increase in the number 
of iterations required for the optimization algorithm 
to converge to the global minimum and the suscepti-
bility of the algorithm to converge to a local mini-
mum (as opposed to the global minimum) as a result 
of the combined effects of measurement noise, in-
completeness of the modal data and modeling uncer-
tainty. 

Consequently, it is suggested that the ASA sto-
chastic global optimization algorithm can be imple-
mented for identification of damage conditions in 
those cases where the deterministic NLS optimiza-
tion method failed to provide accurate results. 

The identification results when using the ASA 
optimization technique and the corresponding dis-
cussion are presented in section 3.4. 
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Table 2. Single damage severity estimation results for incom-
plete and 5% noise polluted response data. 

Induced  

damage at 

Element 13 

(E13) 

Predicted dam-

age at element 

13 (E13) 

No. of   

iterations 

Prediction 

Error (%) 

1 1.024 35 2.38 
2 1.971 33 -1.44 
5 5.170 37 3.39 
10 10.125 34 1.25 
15 15.080 32 0.53 
20 20.040 35 0.20 

 
Table 3. Single damage severity estimation results for incom-

plete and 10% noise polluted response data. 

Induced  

damage at 

Element 13 

(E13) 

Predicted dam-

age at element 

13 (E13) 

No. of   

iterations 

Prediction 

Error (%) 

1 1.058 44 5.83 
2 1.935 38 -3.24 
5 5.290 43 5.79 
10 10.289 35 2.89 
15 15.184 34 1.23 
20 20.097 36 0.49 

 

Table 4. Single damage severity estimation results for incom-
plete and 20% noise polluted response data. 

Induced 

damage at 

Element 13 

(E13) 

Predicted dam-

age at element 

13 (E13) 

No. of   

iterations 

Prediction 

Error (%) 

1 1.144 41 14.36 
2 3.276 37 63.78 
5 5.4406 44 8.81 
10 10.589 41 5.89 
15 15.388 74 2.59 
20 20.227 32 1.14 

 
 
 

Table 5. Multiple damage severity estimation results for in-

complete and 5% noise polluted response data. 

Induced  damage 
at each element 
(Ei) 

Predicted damage 
at each element (Ei) 

No. of  
iterations 

E7 E13 E19    E7 E13 E19 

5 5 5 5.563 5.405 5.051 112 

10 10 10 11.465 13.372 14.048 96 

15 15 15 15.184 15.256 15.166 110 

20 20 20 19.724 20.123 20.008 124 

10 20 10 10.088 20.236 9.897 109 

5 20 15 5.065 20.175 14.801 149 

 

 

Prediction Error (%) 

E7 E13 E19  

11.267 10.108 1.024  

14.65 33.72 40.48  

1.23 1.71 1.11  

-1.38 0.62 0.04  

0.88 1.18 -1.04  

1.29 0.88 1.33  

 
Table 6. Multiple damage severity estimation results for in-
complete and 10% noise polluted response data. 

Induced  damage 
at each element 
(Ei) 

Predicted damage 
at each element (Ei) 

No. of  
iteration 

E7 E13 E19    E7 E13 E19 

5 5 5 6.598 6.271 5.401 113 

10 10 10 11.167 13.606 14.026 121 

15 15 15 19.678 19.820 20.007 126 

20 20 20 20.438 20.529 19.806 133 

10 20 10 15.363 24.544 15.616 138 

5 20 15 11.037 24.409 19.741 114 

 

Prediction Error (%) 

E7 E13 E19  

31.96 25.42 8.02  

11.674 36.06 40.26  

31.188 32.14 33.38  

2.19 2.65 -0.97  

53.63 22.77 56.16  

120.74 22.05 31.40  

 
 

 
Table 7. Multiple damage severity estimation results for in-
complete and 20% noise polluted response data. 

Induced  damage 
at each element 
(Ei) 

Predicted damage 
at each element (Ei) 

No. of  
iterations 

E7 E13 E19    E7 E13 E19 

5 5 5 8.687 8.403 6.784 119 

10 10 10 10.199 10.987 9.682 108 

15 15 15 20.952 20.364 19.567 87 

20 20 20 21.95 22.72 20.25 104 

10 20 10 16.127 25.798 15.345 65 

5 20 15 11.572 25.522 19.522 99 
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Prediction Error (%) 

E7 E13 E19  

73.73 68.06 35.69  

1.99 9.87 -3.19  

39.68 35.76 30.44  

9.73 13.62 1.23  

61.27 28.99 53.45  

131.44 27.61 30.15  

3.4 Discussion on damage severity estimation 
results from ASA method  

In this section, the robustness of the ASA damage 
severity estimation algorithm (as compared to that of 
NLS algorithm) is investigated in the presence of in-
complete and noisy response data. With this aim in 
mind, the ASA global optimization was applied to 
the identification of multiple damage conditions 
where the standard NLS optimization was found to 
be ineffective; the results obtained are presented in 
Tables 8–10. 

In general, when compared to the results obtained 
using NLS optimization discussed in the previous 
section 3.3, the ASA method is found to provide 
significantly more accurate damage severity predic-
tions. For instance, for the 5% noise level and 10% 
multiple damage condition, the maximum prediction 
errors observed for ASA and NLS optimization me-
thods are about 5.6% (Table 8) and 40.5% (Table 5), 
respectively. Similarly, for the 10% and 20% noise 
levels, the results obtained from the ASA algorithm 
are found to be more accurate than those obtained 
from the NLS algorithm (see Tables 9 and 10). For a 
10% noise level and the 10% multiple damage con-
dition, the maximum prediction error observed for 
ASA and NLS optimization methods are about 8.4% 
(Table 9) and 40.3% (Tables 6), respectively. For the 
10% noise level and 15% multiple damage condi-
tion, the maximum prediction error observed for the 
ASA and NLS optimization methods are about 1.7% 
(Table 9) and 33.4% (Table 6), respectively. 

 

Table 8. Multiple damage severity estimation results for in-
complete and 5% noise polluted response data (ASA). 

Induced  damage 
at each element 
(Ei) 

Predicted damage 
at each element (Ei) 

No. of states 
generated 
(accepted) 

E7 E13 E19    E7 E13 E19 

10 10 10 9.934 9.915 9.438 2171 (500) 

 

Prediction Error (%) 

E7 E13 E19  

-0.67 -0.85 -5.62  

 

 
Table 9. Multiple damage severity estimation results for in-
complete and 10% noise polluted response data (ASA). 

Induced  damage 
at each element 
(Ei) 

Predicted damage 
at each element (Ei) 

No. of 
states 
generated 
(ac-
cepted) 

E7 E13 E19    E7 E13 E19 

10 10 10 9.888 10.058 9.162 1668 
(400) 

15 15 15 15.198 15.306 14.751 3270 
(800) 

10 20 10 10.162 20.507 9.713 2304 
(500) 

5 20 15 6.644 21.429 16.129 4555 
(1000) 

10 10 10 9.888 10.058 9.162 1668 
(400) 

 

Prediction Error (%) 

E7 E13 E19  

-1.13 0.58 -8.38  

1.32 2.04 -1.66  

1.62 2.53 -2.87  

32.88 7.14 7.52  

-1.13 0.58 -8.38  

 
 

Similarly, for the 20% noise level and various 
damage condition states, significant improvements 
in the severity estimation results were observed for 
the ASA algorithm as compared with those obtained 
from NLS optimization (see Table 10). Only for the 
5% multiple damage condition and 20% noise, were 
there high level prediction errors observed from the 
ASA algorithm due to the effect of the reduction in 
the number of measurement grid points and vibra-
tion modes and also due to the less severe nature of 
the damage simulated. For the 15% multiple damage 
condition, the maximum prediction errors observed 
for the ASA and NLS optimization methods are 
about 1.8% (Table 10) and 30.4% (Tables 7), respec-
tively. For irregular multiple damage (10%-20%-
10%), the maximum prediction errors observed for 
the ASA and NLS optimization methods are about 
7.2% (Table 10) and 53.5% (Tables 6), respectively. 
Similarly, for irregular multiple damage (5%-20%-
15%), the maximum prediction error observed for 
the ASA and NLS optimization methods are about 
5.5% (Table 10) and 30.2% (Table 7), respectively. 

 
Table 10. Multiple damage severity estimation results for in-
complete and 20% noise polluted response data (ASA). 

Induced  damage 
at each element 
(Ei) 

Predicted damage 
at each element (Ei) 

No. of 
states 
generated 
(ac-
cepted) 

E7 E13 E19  E7 E13 E19 
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5 5 5 8.687 8.403 6.784 4000 
(880) 

15 15 15 15.567 15.778 15.778 1149 
(300) 

10 20 10 10.209 20.973 9.277 2166 
(500) 

5 20 15 7.201 22.027 15.830 4615 
(900) 

 
Prediction Error (%) 

E7 E13 E19  

73.74 68.06 35.67  

3.78 5.19 -1.81  

2.10 4.86 7.24  

44.02 10.14 5.53  

 
 
Overall, significant improvements have been able 

to be achieved by using the ASA algorithm over the 
NLS optimization method, in this example structure. 
The randomized global optimization method is more 
powerful for predicting structural damage severity 
than the deterministic search method when more rea-
listic damage conditions and measurement noise are 
taken into consideration. 

Finally, it can be concluded that the two-stage 
damage identification approach along with the ASA 
global optimization are found to be a powerful tool 
for accurately predicting structural damage severity 
in the presence of simulated complex damage condi-
tion states; significant measurement noise and in-
complete modal data. The wide-ranging merits of the 
ASA global optimization approach when compared 
to those of the deterministic NLS method are how-
ever only realized at a price - the significantly longer 
processing time required to implement it. 

4 CONCLUSIONS  

In this paper, the performance characteristics of 
the nonlinear deterministic and global stochastic op-
timization techniques for solving the inverse prob-
lem (i.e., inverse estimation of structural damage se-
verity) when implemented in the context of a two-
stage structural damage identification process on a 
damaged beam have been extensively studied. In 
general, the results obtained from both algorithms 
studied show impressive performance of the two-
stage structural damage identification approach de-
spite the presence of modeling and measurement un-
certainties and moderate levels of induced damage 
severity.  

The deterministic nonlinear least-squares optimi-
zation technique was found to be quite efficient and 
accurate in predicting structural damage severity 

provided that there is no significant measurement 
noise. However, for cases involving data capture 
with higher levels of noise and a beam with multiple 
damage condition states, the nonlinear least-squares 
optimization technique was found to be ineffective 
and failed to converge to the true values of the mod-
el parameters. On the other hand, the adaptive simu-
lated annealing global optimization method was 
found to be more robust and superior in its perfor-
mance in finding the global optimal solution in the 
presence of significant noise levels and more com-
plex multiple damage condition scenarios. Whilst of-
fering significant merits, the adaptive simulated an-
nealing method was however found to be 
computationally intensive, taking several processing 
hours on a standard PC computer before converging 
to the true values of the model parameters., It is 
therefore deemed prudent to consider applying both 
the deterministic nonlinear least-squares optimiza-
tion technique as well as the ASA method for solu-
tion of inverse problems (damage severity estimation 
in this case) depending upon the nature and com-
plexity of the problem concerned. 

Finally, the results presented in this paper show 
that there are some variations observed in the accu-
racy levels of the damage severity estimation results 
and the time required for the optimization algorithms 
to converge due to the influence of incompleteness 
and measurement noise in the simulated response 
data. This influence is found to affect the prediction 
capability for multiple damage severity more so than 
for the single damage condition state. 
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