
                         Electronic Journal of Structural Engineering 12(1) 2012 

 

10 
 

 
 
 
 
 

 
 
 
1 INTRODUCTION  

 
Load-moment (P-M) strength interaction diagrams 
(ACI 1997) have been commonly used for the design 
of reinforced concrete columns.  For a rectangular 
reinforced concrete section, as shown in Fig. 1(a), 
the P-M interaction diagram resulting from using the 
strong axis is different from that resulting from using 
the weak axis.  Since there is no strong or weak axis 
being defined for a circular reinforced concrete sec-
tion, it has been assumed that a circular reinforced 
concrete section will only result in one P-M diagram; 
it does not matter which bending axis in the section 
is used.  In fact, similar to a rectangular section, the 
two different bending axes in the circular reinforced 
concrete section, as shown in Fig. 1(b), may also re-
sult in two quite different P-M diagrams.  Sections 2, 
3, and 4 in this paper demonstrate the development 
of the nominal axial compression-bending moment 
strength (Pn-Mn) interaction diagrams for a circular 
concrete column using 6 longitudinal reinforcing 
bars. 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 PROPERTIES OF A CIRCULAR COMPRES-
SION BLOCK 

 
When a circular reinforced concrete column is ec-
centrically loaded, the area of the Whitney compres-
sion block (Whitney 1942) in the cross section of the 
column can be computed by using either the geome-
tric approach or the trigonometric integrals approach 
as shown below. 
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ABSTRACT: A rectangular reinforced concrete column usually has a strong axis and a weak axis.  Bending 
about the strong axis results in a larger bending strength; on the other hand, bending about the weak axis re-
sults in a smaller bending strength. Since longitudinal reinforcing bars are usually uniformly distributed 
around the perimeters of circular columns, there is no strong or weak axis being defined for circular reinforced 
concrete columns.  As a result, bending-axis effects on circular concrete columns using a large number of lon-
gitudinal reinforcing bars have traditionally been neglected.  However, considerable bending-axis effects on 
circular concrete columns using a limited number of longitudinal reinforcing bars may exist and should not be 
neglected.  An example of a circular reinforced concrete column using six longitudinal reinforcing bars is pre-
sented in this paper to demonstrate the bending-axis effects on the nominal axial compression-bending mo-
ment strength (Pn-Mn) interaction diagram of the column.  A final Pn-Mn diagram that considers the bending-
axis effects is also presented in this paper. 
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Figure 1. Cross sections of reinforced concrete columns 
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1. Geometric approach: Referring to Fig. 2, the 
area of a circular compression block can be obtained 
by subtracting the area of a triangular segment from 
the area of a circular segment. 

  
The area of the circular segment enclosed by the ra-
dius OA and OB and the arc AB can be computed as 
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The area of the triangular segment enclosed by the 
radius OA and OB and the chord AB can be com-
puted as 
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Therefore, the area of the circular compression block 
is 
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2. Trigonometric integrals approach: Referring to 

Fig. 3, the area of the circular compression block is 
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Also, the location of the centroid of the circular 
compression block is  
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Figure 2. Circular compression block for bending about y-axis  

(geometric approach) 
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3 EXAMPLES OF THE COMPUTATION OF 
NOMINAL AXIAL COMPRESSION STRENGTH 
AND NOMINAL MOMENT STRENGTH  

 
The following two examples demonstrate the com-
putation of the nominal axial compression strength 
(Pn) and the nominal moment strength (Mn) for a cir-
cular spiral column reinforced with six (6) longitu-
dinal bars.  The locations of the six longitudinal bars 
in both examples are symmetric about the bending 
axis (the y-axis).  In Example 1, the bending axis 
goes through the centroid of the six bars but does not 
go through any of them (Fig. 4).  In Example 2, the 
bending axis goes through two of the six bars, as 
well as the centroid of the six bars (Fig. 5).  The stat-
ics method (Wang et al. 2007) is used for the com-
putation of the Pn and the Mn values for these two 
examples. 
 

Example 1: Determine the nominal axial com-
pression strength (Pn) and the nominal moment 
strength (Mn) for a balanced strain condition on the 
section of a circular spiral column reinforced with 6-
#10 (ASTM A615 bars (ASTM 2001)) longitudinal 
bars for bending about the y-axis as shown in Fig. 4. 
Given: The compressive strength of concrete, '

cf = 
20.7 MPa (3 ksi); the yield stress of steel, fy = 414 
MPa (60 ksi); and the modulus of elasticity of steel, 
Es = 200,000 MPa (29,000 ksi).  Note that the di-
ameter of a #10 ASTM A615 bar is 32.3 mm 
(1.270") and the area of the bar, As = 8.19 cm

2
 (1.27 

in.
2
); the diameter of a #3 ASTM A615 bar is 9.5 

mm (0.375"). Also note that a balanced strain condi-
tion exists at a cross section when the strain of the 
tension steel reaches εy (the strain corresponding to 
fy; i.e. εy = fy/Es) just as the maximum strain of the 
concrete in compression reaches its assumed ulti-
mate strain of 0.003 (ACI 2008). 
 

1. Determine the location of the neutral axis: 
Referring to Fig. 4, the distance from extreme com-
pression fibers to extreme tension steel, dt = 444.2 
mm. The yield strain of the steel, εy = (fy /Es) = (414 
MPa / 200,000 MPa) = 0.00207. The distance from 
the extreme compression fibers to the neutral axis 
for a balanced strain condition can be determined as 

 

  263
ε003.0

003.0

y




 tb dx  mm 

 
The depth of the Whitney equivalent rectangular 
stress distribution (Whitney 1942) in concrete for the 
balanced strain condition can be determined as 

 

ab = β1xb = 0.85 (263 mm) = 223.5 mm 
 

Note that the factor β1 is 0.85 for '
cf ≤ 27.6 MPa 

(4000 psi) (ACI 2008). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Calculate the properties of the circular compres-

sion block: 
Referring to Figs. 3 & 4,  
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The area of the circular compression block can be 
computed using Eq. (1): 
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Figure 4. Balanced strain condition of Example 1 
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The location of the centroid of the circular compres-
sion block can be determined using Eq. (2): 
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3. Calculate the compressive force in concrete in 

the circular compression block:  
 

Cc = 0.85 '
cf A = 0.85(0.0207)(85850) = 1510 kN  

 

4. Calculate the strains and forces in the tension 

and the compression steel:  

Referring to Fig. 4, the strains of the steel are 
 
εs1 = 0.00227 (> εy) 

 
εs2 = 0.00119 (< εy), and 

 
εs3 = 0.000984 (< εy) 

 
The forces in the steel are 

 
T1 = Asfy = 819(0.414) = 339 kN  
 
T2 = As εs3 Es  
    = 2(819)(0.000984) (200) = 322 kN 
 
Cs1 = As (fy – 0.85 '

cf )  
      = 819[0.414 – 0.85(0.0207)] = 325 kN 
 
Cs2 = As (εs2 Es – 0.85 '

cf )  
      = 2(819)[(0.00119) (200)  – 0.85(0.0207)]  

= 361 kN 
 

Note that the value of (0.85 '
cf ) is the stress that has 

already been considered for the computation of the 
compressive force Cc. 

 

5. Calculate the nominal axial compression 

strength: 
 
Pn = Cc + Cs1 + Cs2 – T1 – T2  

        = 1535 kN (345 kips) 
 

6. Calculate the nominal moment strength: 
 
  Mn = [Cc ×  X  + (T1 + Cs1)(190.2)  

         + (T2 + Cs2)(95.1)] 
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      = 379 kN·m (280 k·ft) 
  

Example 2: Determine the nominal axial com-
pression strength (Pn) and the nominal moment 
strength (Mn) for a balanced strain condition on the 
section, as shown in Fig. 5. While the section and 
material properties of this example are the same as 
that given in Example 1, the bending axis of this ex-
ample is perpendicular to that of Example 1.  
 

1. Determine the location of the neutral axis: 
Referring to Fig. 5, the distance from extreme com-
pression fibers to extreme tension steel, dt = 418.8 
mm. The distance from the extreme compression fi-
bers to the neutral axis for a balanced strain condi-
tion can be determined as 
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The depth of the Whitney equivalent rectangular 

stress distribution in concrete for the balanced strain 

condition can be determined as 
 
ab = β1xb = 0.85 (247.8 mm) = 210.6 mm 
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Figure 5. Balanced strain condition of Example 2 
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2. Calculate the properties of the circular compres-

sion block: 
 
Referring to Figs. 3 & 5,  
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The area of the circular compression block can be 
computed using Eq. (1): 
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The location of the centroid of the circular compres-
sion block can be determined using Eq. (2): 
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3. Calculate the compressive force in concrete in 

the circular compression block:  
 

Cc = 0.85 '
cf A  

     = 0.85(0.0207)(79400) = 1397 kN  
 

4. Calculate the strains and forces in the tension 

and the compression steel: 
 
Referring to Fig. 5, the strains of the steel are 

 
 εs1 = 0.00192 (< εy), and 
 
   εs2 = 0.0000744 (< εy) 
 

The forces in the steel are 
 
 T1 = Asfy = 2(819)(0.414) = 678 kN  

 
T2 = As εs2 Es  
     = 2(819)(0.0000744) (200) = 24 kN 

 

Cs = As (εs1 Es – 0.85 '
cf )  

     = 2(819)[(0.00192) (200)  – 0.85(0.0207)]  
     = 600 kN 

 

5. Calculate the nominal axial compression 

strength: 
 
Pn = Cc + Cs – T1 – T2 = 1295 kN (291 kips) 

 

6. Calculate the nominal moment strength: 
 

Mn = [Cc ×  X  + (Cs + T1)(164.8)] 








1000

1
  

          = 394 kN·m (291 k·ft) 
 

The results derived from Examples 1 & 2 demon-
strate the bending-axis effects on the balanced strain 
condition for a circular column with longitudinal 
bars. Due to the bending-axis effects, the Mn value 
obtained from Example 1 for the balanced strain 
condition is different from that obtained from Ex-
ample 2.  The Mn value obtained from Example 1 
(379 kN·m) is about 96% of that obtained from Ex-
ample 2 (394 kN·m).  Also, the Pn value obtained 
from Example 2 for the balanced strain condition is 
different from that obtained from Example 1.  The 
Pn value obtained from Example 2 (1295 kN) is only 
about 84% of that obtained from Example 1 (1535 
kN).   
 
4 NOMINAL AXIAL COMPRESSION-BENDING 
MOMENT STRENGTH INTERACTION DIA-
GRAMS 

 
By using the statics method, as shown in Examples 1 
& 2, the “Pn” value (the nominal axial compression 
strength) and the “Mn” value (the nominal bending 
moment strength) corresponding to each “a” value 
(the depth of the Whitney equivalent rectangular 
concrete stress distribution) are determined and are 
summarized, as shown in Tables 1 & 2.  Table 1 is 
for the bending at axis location I (the location of the 
bending axis is shown in Example 1).  Table 2 is for 
the bending axis at location II (the location of the 
bending axis is shown in Example 2).   
 
Table 1. Pn and Mn data for the bending axis at location I (the 

location of the bending axis is shown in Example 1) 

      a      Pn      Mn 

mm inches   kN  kips kN·m  ft-kips 

508.0  20.00 5510 1239       0        0 

449.7  17.71 4684 1053   131      97 

428.6  16.87 4508 1014   160    118 

400.9  15.78 4219   949   198    146 

369.0  14.53 3844   864   241    178 

332.9  13.11 3396   763   282    208 

301.7  11.88 2937   660   315    232 

270.7  10.66 2430   546   343    253 

239.5    9.43 1857   418   367    271 

223.5    8.80 1535   345   379    280 

210.1    8.27 1295   291   379    280 

196.6    7.74 1037   233   378    279 

175.1    6.89   592   133   374    276 

142.7    5.62   147     33   329    243 

133.7    5.27 0 0   312    230 
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Table 2. Pn and Mn data for the bending axis at location II (the 

location of the bending axis is shown in Example 2) 

       a     Pn     Mn 

mm inches kN kips kN·m ft-kips 

508.0  20.00 5510 1239 0  0 

454.6  17.90 4684 1053   121      89 

434.4  17.10 4508 1014   149    110 

402.6  15.85 4219   949   191    141 

369.7  14.55 3844   864   236    174 

334.6  13.18 3396   763   281    207 

302.3  11.90 2937   660   318    234 

270.1  10.63 2430   546   349    258 

236.7    9.32 1857   418   378    279 

221.3    8.71 1535   345   388    286 

210.6    8.29 1295   291   394    291 

194.3    7.65 1037   233   382    282 

168.6    6.64   592   133   356    263 

146.2    5.76   147     33   328    242 

139.6    5.50       0 0   318    234 

 
 
Based on the data shown in Tables 1 & 2, the Pn-

Mn interaction diagrams for the bending axis at loca-
tions I & II are constructed and are shown in Fig. 6.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 BENDING-AXIS EFFECTS ON Pn-Mn INTE-
RACTION DIAGRAMS 

 
Fig. 6 presents the two Pn-Mn interaction diagrams 
for the circular column.  One results from the bend-

ing axis at location I, while the other results from the 
bending axis at location II.  Due to the bending-axis 
effects, the two diagrams deviate from each other 
and also intersect with each other at several points. 
Four zones are identified between the intersected 
points, as shown in Fig. 7.  Each zone has two enve-
lopes for the Pn-Mn diagram.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6 PROPOSED FINAL Pn-Mn INTERACTION DI-
AGRAM 

 
Within each zone as shown in Fig. 7, the envelope 
which goes through the smaller Mn values is the one 
that controls the bending moment strength for that 
zone. Referring to Figs. 6 & 7, since the bending 
axis at location II results in smaller Mn values in 
zones 1 & 3, it controls the envelopes in these two 
zones.  Also, since the bending axis at location I re-
sults in smaller Mn values in zones 2 & 4, it controls 
the envelopes in these two zones.  Fig. 8 presents the 
proposed final Pn-Mn interaction diagram that takes 
the bending-axis effects into consideration for the 
circular column.  Note that the final diagram was 
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Figure 7. Bending axis effects on Pn-Mn interaction diagrams  
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constructed by using the controlling envelope in 
each zone. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
7 CONCLUSIONS 

 
Load-moment (P-M) strength interaction diagrams 
for rectangular and circular cross sections have been 
commonly used for the design of reinforced concrete 
columns.  Two P-M diagrams resulting from two 
bending axes (strong and weak axes) are usually 
used for the design of a rectangular reinforced con-
crete column.  However, since there is only one 
bending axis being considered for the design of a 
circular reinforced concrete column, the bending-
axis effects on the P-M interaction diagrams for cir-
cular reinforced concrete columns have traditionally 
been ignored.  As demonstrated in this paper, the 
bending-axis effects on the P-M interaction diagrams 
for a circular concrete column using a limited num-
ber of longitudinal reinforcing bars are considerable 
and should not be neglected. A recommended Pn-Mn 
diagram, therefore, is proposed in this paper in order 
to take the bending-axis effects into consideration. 
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NOTATION 
 
A  =  area of a circular compression block 
As   =  area of reinforcement 
a      = depth of Whitney equivalent rectangular 

stress distribution in concrete 
ab    = depth of Whitney equivalent rectangular 

stress distribution in concrete for a ba-
lanced strain condition 

Cc    = compressive force in concrete in a circular 
compression block 

Cs    = compressive force in longitudinal rein-
forcement 

dt     = distance from extreme compression con-
crete fibers to extreme tension reinforce-
ment 

Es  = modulus of elasticity of reinforcement 
'
cf   =   specified compressive strength of concrete 

 fy   =   specified yield strength of reinforcement 
Mn   =   nominal moment strength 
Pn   =   nominal axial load strength 
T  =   tensile force in longitudinal reinforcement 
X    = location of the centroid of a circular com-

pression block 
 xb   = distance from extreme compression fibers 

to the neutral axis for a balanced strain 
condition 

β1    =  the ratio ab / xb 
εs   =  strain in longitudinal reinforcement  
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