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1 INTRODUCTION 

The occurrence of earthquake itself is not cata-
strophic. Disaster from earthquake happens when the 
shaking of ground causes severe damage onto struc-
tures built by mankind. Thus, to prevent tragedies 
from happening due to earthquake, the effectiveness 
of seismic structural evaluation technique is essen-
tial. However, the key question arises. How strong 
an earthquake is classified as strong? At what inten-
sity of shaking will a particular building need to be 
evacuated? For earthquake prone countries such as 
Indonesia where small magnitude of ground shakes 
occur frequently, it might not be practical for evacu-
ation of buildings whenever tremors are felt. To 
make matter worse, a similar magnitude of tremor 
might be causing multiple types of effects onto dif-
ferent types of structures depending on the natural 
period of each building. Therefore, an intelligent 
seismic evaluation system was innovated in this 
study by incorporating Artificial Neural Network 
(ANN) algorithm in predicting damage index of a 
particular given building at any given time.  

2 LITERATURE REVIEW 

2.1 Artificial Neural Network (ANN) 

Artificial Neural Network (ANN) is typically refer-
ring to mathematical algorithm model imitating be-
haviours of biological neuron system. Generally, 
neural networks comprise neurons which are ex-
pressed mathematically in computer programming 
languages to behave like human brains. The algo-
rithm usually consists of three basic layers; input 
layer, hidden layer and output layer respectively 
(Figure 1). Numerous researchers (Wu et al, 1992; 
Masters, 1993; Tang et al, 1993; Tsou and Shen, 
1993; Zhao et al, 1998) had investigated the capabil-
ities of utilizing ANN in the field of structural engi-
neering. Most of them agreed that ANN was capable 
to solve at least as well as a traditional method for 
any given task.  

Very much alike to human brains, the artificial 
neural networks have the capability to learn apply 
knowledge from past experiences in solving new 
problems in new environment (Abdullah et al, 
2000). This learning is provided to the neural net-
work through training process where an amount of 
data is fed into the neural network in order to obtain 
the optimum weight values within the algorithm. 
There are typically two types of learning methods 
available, namely the supervised and unsupervised 
method. The supervised method being more com-
mon is adapted in this study. 
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ABSTRACT: An effective, convenient and reliable intelligent seismic evaluation system for buildings in 
Malaysia has been developed in this study by using Back-Propagation Artificial Neural Network (ANN) 
algorithm. A total of forty one buildings with 164 sets of input data spreading throughout Peninsular and East 
Malaysia were chosen and analyzed using IDARC-2D finite element software under seismic loading at peak 
ground accelerations of 0.05g, 0.10g, 0.15g and 0.20g respectively. Non-linear dynamic analysis was 
performed in order to obtain the damage index of each building. The ANN algorithm comprising 15 hidden 
neurons with 1 hidden layer outperformed other combinations in predicting the damage index of buildings 
with accuracy statistical value of 93% in testing phase as well as 75% in validation stage. From the results, 
the ANN system is suitable to be used for predicting the seismic behaviour of their buildings at any given 
time. 
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Figure 1. Typical Structure of ANN 

2.2 Damage Index (DI) 

Most of the existing building performance level in-
dicators are expressed in qualitative forms rather 
than in numerical values. Taking for example, the 
Structural Engineers Association of California, 
SEAOC has identified four level of performance in-
dicators; namely Fully Operational (FO), Operation-
al (O), Life Safe (LS) and Near Collapse (NC) in 
their Vision 2000 guidelines (SEAOC, 1995). Be-
sides that, the National Earthquake Hazard Reduc-
tion Program (NEHRP) Guidelines have proposed 
similar performance indicators as in Vision 2000. 

However IDARC-2D, the chosen analysis soft-
ware in this study incorporates the Park & Ang dam-
age model (Park et al., 1984). According to the 
model, Park & Ang damage index (DIP&A) for a par-
ticular structural element is determined by: 
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                (1)             

where δm = maximum experienced deformation; δu = 
ultimate deformation of element; Py = yield strength 
of element;    h = hysteretic energy absorbed by 
element during response history; and β = model con-
stant parameter. 
 The Park & Ang damage model has been cali-
brated with nine separate observations of damaged 
reinforced concrete buildings (Park et al., 1986). 
The calibrated damage indexes which represent the 
level of physical deterioration of those associated 
buildings are listed in Table 1. 
  

Table 1. Calibrated damage indexes of Park & Ang damage 

model (Park et al., 1986) 

Damage Level Physical Condition Damage Index 

Collapse 
At least partial col-

lapse 
> 1.0 

Severe 

Widespread con-

crete crushing or 

reinforcement 

0.4 – 1.0 

buckling 

Moderate 
Visible cracks or 

concrete spalling  
< 0.4 

 
 
Based on the damage index of an individual struc-
tural element according to (1) is inadequate to cate-
gorize the global damage of the whole building. 
Therefore, Kunnath et al., (1992) has made modifi-
cation to the previous damage model due to compli-
cation in incorporating the relative storey move-
ments with localized element plastic hinge 
deformation. This modified damage model is shown 
in (2). 
 

   
     

     
 

 

    
          (2) 

 
Where DI = modified damage index; θm = maximum 
rotational response; θu= ultimate sectional rotational 
capacity; = θr unloading recovered rotation; My = 
yield moment; and Eh = dissipated energy within the 
section  

2.2 Current Practice of Seismic Inspection 

The most widely adopted seismic inspection current-
ly available is the so-called rapid screening proce-
dure or in short, the RSP survey. This method com-
prises two different sets of protocols or procedures 
for inspectors to rapidly evaluate the seismic risk of 
a particular building of interest merely via visual in-
spection. The first method is known as ATC-
21survey (ATC-21, 1988). This method is designed 
to serve as preliminary tools in assessing the build-
ing’s capability to resist seismic threats just by judg-
ing from its external appearance. Using the prede-
termined checklist, inspectors will then decide 
whether the building is hazardous based on the score 
sheet. 
 Those buildings deemed unsatisfactory will then 
have to undergo ATC-22 evaluation (ATC-22, 
1989). In this checklist, the structural integrity as 
well as non-structural implications is taken into con-
sideration. Nevertheless, the assessment is still con-
centrating on qualitative evaluation based on the 
score sheet contained on the checklist. 

2.3 Research Significance  

As discussed previously, the currently available 
seismic inspection methods (ATC-21 and ATC-22) 
are unable to generate quantitative damage indexes. 
There exists a gap of knowledge to implement the 
quantitative Park & Ang damage model in assessing 
real structures, without carrying out thorough struc-
tural analysis in advance. The main objective of this 
study was to investigate the feasibility in adopting 
Artificial Neural Network (ANN) algorithm in pre-
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dicting seismic damage of reinforced concrete frame 
buildings under damaging earthquake forces. Up to 
the authors’ knowledge, there is no extensive re-
search information available regarding such subject 
matter up-to-date. Therefore, this study also ex-
amined the types of parameters to be fed into the 
ANN system as input in order to obtain higher accu-
racy of building damage predictions. 

3 METHODOLOGY 

The main research methodology adopted in this 
study could be categorized into two different main 
phases. The first phase will be the nonlinear time-
history finite element analysis of the building sam-
ples by IDARC-2D to obtain the damage index for 
each particular building. 
 In performing the nonlinear response history ana-
lyses using IDARC-2D, the 1940 El-Centro ground 
motion data was scaled to four levels of peak ground 
acceleration (PGA) value; 0.05g, 0.10g, 0.15g and 
0.20g. As the nature of this study was to determine 
the feasibility in applying the ANN model in dam-
age prediction, the finite element modeling was just 
serving the purpose of generating input data to be 
fed into the ANN algorithm. Hence, the variability 
of frequency content of the time history was not the 
main context in this phase of study. Nevertheless, 
the predominant period of the scaled El-Centro time 
history was considerably covering a vast range from 
0.01 to 3.0s (Figure 2). 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 2. Predominant period of El-Centro response history 

 
 
 The second phase comprised the development of 
Back-Propagation (BP) Artificial Neural Network 
(ANN) algorithm for prediction of damage index for 
buildings at any given seismic accelerations. This 
paper focuses on the latter phase of the study that is 
regarding the data characteristics and classifications 
for the ANN process. Besides that, the vitality of 

each identified parameters towards the damage in-
dex prediction was determined by mathematical 
models (mean square method and linear correlation 
coefficient analysis). The thorough finite element 
modeling and analysis of the building samples were 
being reported elsewhere (Ismail, 2008). 
 In order to generate training data as input for the 
artificial neural network system, structural data of a 
total of twenty seven buildings scattered around Pe-
ninsular and East Malaysia were collected, and 
modeled for nonlinear response history analyses. 
These twenty eight buildings would generate 112 
sets of total samples. Due to national security and 
privacy issues, the names of these buildings were 
kept anonymous throughout this paper. Neverthe-
less, some basic information particularly dimension-
al detail and dynamic property of these buildings are 
listed in Table 2. The initial natural period of these 
buildings, ranging from 0.22 to 1.86s fell within the 
predominant period of the scaled 1940 El Centro 
ground motion data. 
 
Table 2. Brief information of the sample buildings for training 

data 

Building 
Length Height Bay Age Period 

(m) (m) (nos.) (years) (s) 

1 6.1 48.5 1 33 1.03 

2 72.6 16.6 11 13 0.84 

3 24.0 19.2 3 13 0.46 

4 19.2 25.7 3 27 1.86 

5 36.0 7.4 6 9 0.29 

6 11.0 7.5 2 23 0.36 

7 42.0 13.8 14 6 0.50 

8 10.0 13.8 3 4 0.36 

9 20.1 39.9 3 28 0.83 

10 6.1 34.9 1 23 0.80 

11 75.6 20.0 9 9 0.83 

12 6.1 34.9 1 28 0.81 

13 11.0 17.0 3 26 0.47 

14 9.0 36.2 3 37 0.94 

15 18.0 15.2 4 5 0.23 

16 20.1 14.3 3 5 0.22 

17 9.0 10.6 3 4 0.40 

18 9.0 17.0 3 23 0.22 

19 48.0 7.4 8 11 0.39 

20 72.6 21.6 11 58 0.40 

21 24.0 23.2 3 22 0.48 

22 16.0 51.0 2 16 1.01 

23 7.5 19.0 2 22 0.48 

24 12.2 39.0 2 25 0.97 

25 48.0 23.0 6 45 0.72 

26 8.0 39.0 1 46 0.87 

27 19.5 73.0 3 16 1.83 

28 24.0 64.2 3 31 1.64 

3.1 Parameters affecting building damage index 
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This study is trying to conduct non-linear correlation 
between seven identified factors or parameters that 
might contribute to different seismic damage index 
for different buildings. Five of the parameters be-
long to the characteristics of buildings; age, number 
of bay, height, length and natural period of each 
building respectively. Meanwhile, the remaining two 
parameters are dependent on the seismic force na-
tures; seismic zone and ground acceleration. These 
seven parameters were identified and established 
through the non-linear IDARC-2D analysis of all the 
building samples. The significance of each parame-
ter in influencing the overall damage index predicted 
was tested by performing both the mean square error 
(MSE) method and linear correlation coefficient 
analysis respectively, which will be presented in de-
tail in relevant section later. 

3.2 Artificial Neural Network (ANN) Development 

The algorithm of the ANN system was developed 
with Microsoft C++ programming language. The 
main of advantage of in-house developed software is 
that it allows for customization and better tuning ca-
pability. The developed ANN algorithm consisted of 
mainly 4 main phases (Figure 3). 

 
 
 
 
 
 
 
 
 
 
 

Figure 3. Main phases in ANN algorithm 

 
 

The pioneer stage involved determination of out-
put required from the ANN system. During this 
stage, the input parameters and numbers of hidden 
neurons were investigated. Sample data from 
IDARC-2D were analyzed, classified and distri-
buted. The distributed data were then fed into the 
ANN algorithm for testing phase. In training algo-
rithm, the network would perform iterative looping 
by varying assigned weights until MSE value is less 
than 0.001 between predicted output and exact out-
put. Besides that, the iterative process would also be 
ceased should the numbers of looping reaches 
250,000 cycles. The final values of weights would 
be automatically saved within the ANN algorithm it-
self.  

In the testing phase, the same set of data in train-
ing phase would be once again fed into the ANN for 

output prediction. MSE and linear correlation coeffi-
cient, r value would be calculated automatically to 
ensure the accuracy of the ANN system before fur-
ther usage. The process of validation phase would be 
similar to testing phase. The only different was the 
data used in validation stage were never fed into the 
ANN system during both training and testing phase. 

3.3 Data Analysis 

From the IDARC-2D seismic analysis, seven impor-
tant input parameters which were compulsory as the 
software input were taken as preliminary parameters 
for the ANN input. The parameters included age, 
height, and length, maximum number of bay as well 
as natural period of buildings. The other two para-
meters were seismic zone and ground acceleration. 
These seven parameters were considered as input for 
the ANN algorithm while the output would consist 
only of the damage index for each building. The pre-
liminary overall diagram for the ANN algorithm is 
as illustrated in Figure 4. 

 
 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
Figure 4. Preliminary diagram of ANN for prediction of build-
ing’s damage index 

 
 

There were altogether 164 sets of discrete input 
data for each of the seven identified parameters 
which would require to be classified into several dif-
ferent data class. The main purpose of this effort was 
to eliminate large amount of random data being fed 
as input into the ANN model. These parameters, to-
gether with their data classification details are, listed 
in Table 3. 

 
3.4 Training, Testing and Validation 

After the distribution of input and output parameters 
was determined, the data were divided into two 
groups; (a) training and testing stage and (b) valida-
tion phase. Among the 164 sets of data, 112 data 
were chosen randomly for the first stage while the 

Structure determi-

nation and data 

analysis 

 

Training Phase 

 

Testing Phase 

 

Validation Phase 
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remaining 52 sets of data were reserved for valida-
tion purposes. To ensure unbiased prediction by the 
neural network system, the validation data was not 
involved in training and testing phase. Details and 
information regarding the validation samples are 
contained in Table 4. 

During the training process of the ANN, the in-
fluence of each input parameters towards the overall 
accuracy of the ANN model in prediction of damage 
index was studied by utilizing the mean square error 
analysis (MSE). The MSE for each model was cal-
culated by varying the types of input parameters. 
Besides studying the optimum numbers of input pa-
rameters, the optimum numbers of hidden neuron 
was also studied using the same mathematical me-
thod by applying different quantity of hidden neu-
rons.  

Apart from using MSE analysis, the optimum 
numbers of input parameters as well as numbers of 
hidden neuron was also investigated during the test-
ing and validation stages by utilizing the linear cor-
relation coefficient, r method. 

 
Table 4. Information of buildings for ANN accuracy validation 

Building 
Length Height Bay Age Period 

(m) (m) (nos.) (years) (s) 

1 16.0 64.2 2 27 2.03 

2 14.0 19.2 2 16 0.53 

3 64.0 51.0 8 28 1.58 

4 22.5 48.6 3 26 1.01 

5 9.0 23.6 1 41 0.54 

6 12.0 19.2 2 34 0.47 

7 18.0 27.6 2 34 0.79 

8 67.2 43.4 8 7 1.24 

9 11.0 49.0 3 9 1.40 

10 14.4 26.8 2 5 0.86 

11 46.0 36.4 10 13 1.08 

12 39.0 10.8 7 5 0.82 

13 6.0 14.5 1 37 0.54 

4 RESULTS 

The results of MSE for obtaining the optimum num-
bers of input parameters and numbers of hidden neu-
rons are shown in Table 5 and 6 below. Lower value 
of MSE reflects higher prediction accuracy of the 
ANN model.  

 
Table 5. MSE values for different input parameters 

Item Input Parameters Mean Square Error(MSE) 

1 All input 0.027 

2 Age excluded 0.041 

3 Bay excluded 0.036 

4 Height excluded 0.029 

5 Length excluded 0.025 

6 Zone excluded 0.031 

7 Period excluded 0.037 

8 G. acceleration excluded 0.032 

 
 

Table 6. MSE values for different numbers of hidden neurons 

Item Number of hidden neurons Mean Square Error (MSE) 

1 1 0.057 

2 5 0.088 

3 10 0.027 

4 15 0.027 

5 20 0.095 

6 25 0.115 

7 30 0.372 

 
From Table 5, it is clearly shown that the MSE 

value hit the lowest when the length of the building 
was eliminated by showing reading of 0.025. This 
value did not differ much with the MSE value of 
0.027 when all input parameters were included. 
Meanwhile according to Table 6, the optimum num-
bers of hidden neurons was found to be 10 or 15 
with the lowest MSE value of 0.027 for both cases.  

On the other hand, the results of linear correlation 
coefficient, r method analysis to obtain the most op-
timum numbers of input parameters as well as num-
bers of hidden neurons are shown in Table 7 and 8. 
The closer the value of r is to 1, the more accurate it 
is for the ANN model. 
 
Table 7. Linear correlation coefficient values for different input 

parameters 

Item Input Parameters Linear Correlation Coefficient, 

r 

Testing Phase Validation 

Phase 

1 All input 0.839 0.726 

2 Age excluded 0.241 0.362 

3 Bay excluded 0.520 0.714 

4 Height excluded 0.286 0.461 

5 Length excluded 0.342 0.274 

6 Zone excluded 0.468 0.521 

7 Period excluded 0.762 0.810 

8 Ground acceleration 

excluded 

0.802 0.621 

  
 

Table 8. Linear correlation coefficient values for different 

numbers of hidden neurons 

Item Number of Hidden 

Neurons 

Linear Correlation Coefficient, 

r 

Testing 

Phase 

Validation 

Phase 

1 1 0.532 0.354 

2 5 0.789 0.665 

3 10 0.839 0.709 

4 15 0.839 0.726 
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5 20 0.564 0.453 

6 25 0.332 0.654 

7 30 0.457 0.224 

 
 
By comparing the MSE and r values of the four 

tables, the most optimum numbers of input parame-
ters and numbers of hidden neurons are selected as 
follow; numbers of input parameter selected = 7; and 
numbers of hidden neurons selected = 15. 

With this, the developed ANN model had 
achieved satisfactory percentage of accuracy in both 
testing phase and validation analysis, as illustrated in 
Figure 5 and 6. 

5 CONCLUSIONS 

An Artificial Neural Network (ANN) algorithm 
geared for buildings’ damage index prediction due to 
seismic forces was successfully innovated. In the 
study, it was found out that the ANN gave highest 
accuracy when all seven preliminary identified input 
parameters were used together rather than eliminat-
ing any one of them. Meanwhile, the ANN system 
also achieved the highest accuracy by utilizing 15 
numbers of hidden neurons.  

The system managed to produce accurately 104 
numbers of outputs among 112 building samples 
during testing phase, marking 93% of accurateness. 
However, the accuracy percentage in validation 
phase was only 75%, from which only 39 out of 52 
building samples were being predicted accurately. 
From these percentages, it was clearly shown that 
the characteristic of input data being fed into the 
ANN system influenced the prediction results signif-
icantly. The distribution pattern and amount of these 
inputs in training phase played very important role 
in determining the overall accuracy of the ANN sys-
tem. 

This study focused on feasibility of adopting 
ANN in predicting structural damages due to seismic 
ground motions, as well as parametric investigation 
to determine the effect of different combinations of 
input parameters in affecting the prediction accura-
cy. Therefore, quantification of uncertainties which 
is often one of the key indicators used in conven-
tional seismic risk assessment is not included in this 
study. The ANN directly predicted seismic damage 
of the frame structural system based on the input 
training data from the IDARC-2D analyses. 
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Table 3. Data classification for ANN 

 

Parameter Unit Data Classification Class Range Frequency 

INPUT     

X1: Age  Year Age Class 1 X1 < 10 44 

  Age Class 2 10 < X1 < 20 32 

  Age Class 3 20 < X1 < 30 52 

  Age Class 4 30 < X1 < 40 20 

  Age Class 5 40 < X1 < 50 12 

  Age Class 6 50 < X1 < 60 4 

     

X2: No. of Bay Number 1 1 24 

  2 1 36 

  3 1 56 

  4 1 4 

  5 1 0 

  6 1 8 

  7 1 4 

  8 1 12 

  9 1 4 

  10 1 4 

  11 1 8 

  12 1 0 

  13 1 0 

  14 1 4 

     

X3: Height Meter (m) Height Class 1 X3 < 10 12 

  Height Class 2 10 < X3 < 20 60 

  Height Class 3 20 < X3 < 30 28 

  Height Class 4 30 < X3 < 40 28 

  Height Class 5 40 < X3 < 50 16 

  Height Class 6 50 < X3 < 60 8 

  Height Class 7 60 < X3 < 70 8 

  Height Class 8 70 < X3 < 80 4 

     

X4: Length Meter (m) Length Class 1 X4 < 10 44 

  Length Class 2 10 < X4 < 20 52 

  Length Class 3 20 < X4 < 30 24 

  Length Class 4 30 < X4 < 40 8 

  Length Class 5 40 < X4 < 50 16 

  Length Class 6 50 < X4 < 60 0 

  Length Class 7 60 < X4 < 70 8 

  Length Class 8 70 < X4 < 80 12 

     

X5: Seismic Zone PGA (gal) Seismic Zone 1 30 < X5 < 50 40 

  Seismic Zone 2 50 < X5 < 70 72 

  Seismic Zone 3 70 < X5 < 90 8 

  Seismic Zone 4 90 < X5 < 110 4 

  Seismic Zone 5     110 < X5 < 130 0 

  Seismic Zone 6     130 < X5 < 150 5 

     

X6: Natural Period Second (s) Period Class 1 X6 < 0.5 60 

  Period Class 2 0.5 < X6 < 1.0 60 

  Period Class 3 1.0 < X6 < 1.5 24 

  Period Class 4 1.5 < X6 < 2.0 14 

  Period Class 5 2.0 < X6 < 2.5 4 
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X7: G. Acceleration g Acc. Class 1 0.05 41 

  Acc. Class 2 0.10 41 

  Acc. Class 3 0.15 41 

  Acc. Class 4 0.20 41 

     

OUTPUT     

Y1: Damage Index Damage 

Level 

None Y1 = 0 23 

 Slight 0.00 < Y1 < 0.01 1 

  Minor  0.01 < Y1 < 0.30 124 

  Moderate 0.30 < Y1 < 1.00 5 

  Collapse Y1 > 1.00 11 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Screen shot of testing phase (93% accuracy percentage) 
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Figure 6. Screen shot of validation phase (75% accuracy percentage) 

 

 


