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1 INTRODUCTION 
 
Shear deformations are important considerations in 
the elastic buckling analysis of the compressive 
strength of sandwich columns. Engesser [3-4] and 
later Haringx [5] extended Euler’s column buckling 
formula for prismatic straight columns made of an 
isotropic material by including shear deformations. 
Engesser’s formula predicts an upper limit some-
times referred to as the shear buckling load as the 
slenderness is reduced. Haringx [5] derived an alter-
nate buckling formula which predicted an infinite 
buckling load as the slenderness approached zero. 
Haringx’s formula when modified to take account of 
axial deformations prior to buckling agreed well 

with the experimental results for short rubber rods 
and helical springs. For the helical springs, the ex-
perimental results showed that for small slenderness, 
springs do not buckle below a slenderness of about 
4.9. This observation agreed with the Haringx’s 
formula but not with Engesser’s which predicted 
buckling for any slenderness. Ziegler [6] incorpo-
rated axial, as well as, shear deformations and de-
rived a modified Engesser formula. Ziegler’s modi-
fied Engesser formula predicts a limit for the 
slenderness below which there is no buckling and 
for isotropic prismatic columns does not have the 
upper limit of GA as in the unmodified Engesser 
formula.  Ziegler’s modified Engesser formula com-
pared well with the buckling of rubber rods but did 
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not match the experimental results for helical 
springs (see [7]). Engesser and Haringx used differ-
ent definitions for the beam force internal actions: 
the shear force Q and the axial force N. Each ap-
proach assumes a different orientation for the beam 
force internal actions (see Figure 1). Engesser as-
sumed the axial force to be tangential to the 
centroidal axis while the shear force was taken as 
perpendicular. Haringx assumed that the axial force 
was normal to the cross-sectional plane and the 
shear force perpendicular to the plane. Reissner [8] 
supported Haringx’s approach and definition of in-
ternal actions.  

 
 
Figure 1 Engesser and Haringx Beam Actions 

 
There has been a continuing debate in the litera-

ture about firstly whose buckling formula is correct, 
and secondly about whose theoretical approach for 
the internal beam force actions is correct (see refs 
[6-23]). Related to this debate is the question about 
the correct finite strain constitutive relationship for 
linearly elastic isotropic materials. When reviewing 
the buckling capacity of sandwich columns (see Fig-
ure 2) with weak cores, Bazant & Beghini [15-16] 
found that Engesser’s formula gave a reasonable 
match to the experimental results of Fleck and Sri-
dhar [24] and concluded that Engesser’s column 
buckling formula was correct for sandwich columns 
with weak cores (see Figure 3). In Figure 3, Pcr is 
the elastic critical load, eulerP  is the Euler buckling 
load and GcAm is a so-called localized “shear buck-
ling load” (Gc the shear modulus and Am the effec-
tive core shear area). Fleck and Sridhar tested 15 
sandwich columns with soft shear cores in compres-
sion with 9 columns observed to fail by core shear 
macrobuckling or shear crimping. The test speci-
mens were constructed from Divinycell H30, H100 
and H200 foam for the core and face sheets made 
from 4 layers of eight harness satin weave 7781 E-
glass fibres. The experimental results of Fleck and 
Sridhar [24] are compared to Engesser’s formula Eq. 
(1) in Figure 3. At very small column lengths (above 
10), it is seen that Fleck and Sridhar’s results con-
gregate about the shear buckling GAm prediction. 

The work by Attard and Hunt [11] supported 
Haringx’s “theoretical approach” and Reissner’s [8] 
definition for beam internal force actions. Attard and 
Hunt [11] derived a buckling formula for sandwich 
columns using a consistent hyperelastic constitutive 
relationship for the face sheets and core of a sand-
wich column. The sandwich column buckling for-
mula by Attard and  Hunt [11] was derived using a 
theoretical approach consistent with Haringx’s and 
was almost the same as the formula derived using 
Engesser’s approach. Why does Engesser and 
Haringx's theoretical approach yield the same result 
for sandwich columns with thin face sheet and very 
soft shear cores? For a sandwich column with very 
thin face sheets  , in which we assume no shear de-
formations in the face sheets and the axial force act-
ing on the face sheets is in the same direction as the 
centroidal axis of the column then the theoretical 
approach of Engesser and Haringx yield the same 
terms for the face sheet. The core is very soft so if 
we ignore the axial force component within the core 
then the direction of the shear in the core whether 
perpendicular to the centroidal axis or parallel to the 
deformed plane of the core doesn't matter and there-
fore the orientation of the shear force doesn’t matter 
and the theoretical approaches of Engesser and 
Haringx yield the same terms. So, for the situation 
where there is no shear in the face sheets, the face 
sheets take all the axial stress and the core basically 
only contributes by taking shear without axial 
stress/force, the two theoretical approaches of course 
give the same result. This will be demonstrated in 
detail in this paper by looking at the buckling equa-
tions for a sandwich column. 

Haringx’s column buckling formula was derived 
for a completely different physical problem to that 
for a sandwich column with a soft shear core. 
Haringx’s column buckling formula is for a beam 
constructed out of a single isotropic material and is 
based on constant shearing through the full depth of 
the bending cross-sectional plane. Haringx’s column 
buckling formula with an equivalent shear rigidity is 
not applicable to sandwich columns or to laced col-
umns, columns with batten plates or with perforated 
cover plates and columns with open webs, where 
there is a zigzag shearing pattern of deformations 
through the cross-section. This does not mean that 
Haringx’s theoretical approach and that of Reissner 
cannot be used for sandwich columns. Problems oc-
cur when a sandwich column with two materials 
(face sheet and core) is modeled by an equivalent 
column with a single effective bending and shear ri-
gidity.  

For sandwich columns, Allen [25] gives two 
buckling formulas quoted widely in the literature, 
for thin or thick face sheet sandwich columns: 
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In Eq. (1), Pface is the Euler buckling capacity of 

the face sheets as independent struts while the thick-
ness of the face sheets is denoted by t , the width of 
a sandwich section is taken as b and the core thick-
ness is given by c (see Figure 2). The column buck-
ling formula of Engesser is in essence the same as 
Allen’s formula for thin faces, Eq. (1). The face 
sheet elastic modulus and shear modulus are denoted 
by Ef and Gf, respectively, while for the core they 
are denoted by Ec and Gc, respectively. Figure 4 
shows three modes of possible buckling failure 
modes. The upper limit of Engesser’s buckling for-
mula is GcAm which has been referred to as the shear 
buckling load. Shear buckling is sometimes referred 
to as “shear crimping” and is illustrated in Figure 4.  

Shear crimping is shown as a localized failure. 
Vadakke and Carlsson [26] proposed that shear 
crimping is a form of face wrinkling or a localized 
postbuckling mode. Shear crimping can sometimes 
be initiated by a localized material failure.  
 
As stated previously, Allen’s formula for thin face 
sheets Eq. (1) is essentially the same as Engesser’s 
formula. However, for a core weak in shear, as the 
slenderness is reduced, Eq. (2) rather than Eq. (1) is 
applicable for thin face sheets, as when the core 
ceases to provide effective connection between the 
faces, the face sheets buckle as independent struts. 
Hence, it could be concluded that there is no shear 
buckling upper limit for the critical load as the slen-
derness is reduced since in the limit Pcr approaches 
Pface. 

 
Attard & Hunt [11] modeled the face sheets and 

core as two separate materials and using a finite 
strain hyperelastic constitutive model which was 
consistent with the beam action assumptions of 
Haringx [5], derived the following equation for the 
buckling of soft shear core sandwich columns: 
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Since 1face

euler

P

P
 , Attard & Hunt [11] derived the 

following approximation to Eq. (3), that is: 
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When the effective length of the column is relatively 

long face

c m

P

G A
would be small and the above equation 

matches Eqs. (1), essentially Engesser’s solution.  
However, if the slenderness is very small, the buck-
ling load of the face sheets acting independently will 
dominate. For most practical sandwich column con-
figurations with thin face sheets and weak cores, 
Eqs. (2) & (3) give solutions very close to those de-
rived using Eq. (5). Figure 3 compares the predic-
tions of Eq. (5) with the results of Fleck and Sridhar 
[24]. The comparison is reasonable except for very 
small column lengths ( euler c mP G A above 10), where 

Fleck and Sridhar observed shear crimping failure. 
To determine whether shear crimping (shear buck-
ling) is a member or localised type of buckle, buck-
ling tests on low slenderness - short sandwich col-
umns identified as possibly exhibiting shear 
crimping were performed. This paper presents the 
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results of global buckling tests on sandwich columns 
under compression with low slenderness. 

 
Figure 2 Fixed End Sandwich Column under Compression 
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Figure 3 Experimental Results on Sandwich Columns 

 

2 REVIEW OF COLUMN AND SANDWICH 
COLUMN BUCKLING EQUATIONS 

Here we review the derivations for the global 
buckling load of a prismatic column made of an iso-
tropic material under compression with shear defor-
mations included. The beam centroidal axis is taken 
as the x axis while the vertical principal axis is taken 
as the y axis. The bending equilibrium equation is 
then: 
 

 
a) 

 
b) 

 
c) 

 
Figure 4 Sandwich Column Buckling Modes a) Euler Buckling 
b) Shear Crimping 
c) Face Sheet Wrinkling 
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With v being the vertical deflection of centroidal 
axis, ou the axial displacement of the centroid, M the 
bending moment, tQ  the shear force perpendicular 
to centroidal axis and, Px and Py are the force result-
ants at a cross-section in the x and y directions, re-
spectively. For a statically determinate simply sup-
ported beam under end compression P, the force 
resultants would be Px=-P and Py=0. Substituting the 
curvature bending constitutive relationship into Eq. 
(6) and differentiating twice gives 
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Where EI is the bending rigidity,  is the bending 
rotation of the cross-section and   is the shear rota-
tion. The shear constitutive relationship is different 
in the Engesser and Haringx models. Haringx takes 
the shear force as parallel to the cross-section while 
Engesser takes the shear force as tangential to the 
centroidal axis. The shear constitutive relationships 
are therefore: 

0                   Haringx
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The boundary conditions for the simply supported 

column of length L are  0 0,
d

EI x L
dx


  . Note 

the boundary conditions and shear constitutive equa-

tion imply  0 0,
d

x L
dx


   . Solving the buckling 

problem using Eqs (7) to (9) gives 
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If we include the effects of the axial deformation 

prior to buckling as detailed in [7], the buckling 
formulas would be:  
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Reference [7] also gives the second variation of 
the total potential based on the Engesser and 
Haringx approaches: 
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Here we now compare the second variation of the to-
tal potential for a sandwich column with a weak core 
with that for the column made of one isotropic mate-
rial. For a weak core, a zig-zag type displacement is 
assumed with the face sheets shearing with respect 
to the core as shown in Figure 5. The internal ac-
tions are separated into those acting on the face 
sheets and those acting on the core as in Figure 5b). 
The bending of the face sheet plane is denoted by 
the angle f  while the shear angle of the face sheet 
is denoted by f  (see Figure 5). The rotation of the 
mid-plane of the face sheet is the sum of the rota-
tions f f  . The core cross-sectional plane rotates 

c  from the vertical while the shear of the core is 
defined by  
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The bending rotations ,  f c   and shear angles 
, c f   are all assumed to be functions of the longi-

tudinal coordinate x, only. As shown in [7], the 
slope of the centroidal axis is given by: 
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Reference [7] derives the second variation of total 
potential for the sandwich column using a 
hyperelastic constitutive model and an approach 
consistent with Haringx’s approach, that is: 
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Where  =
tot

P
P

EA  and Nc is the axial force taken by 

the core. For the case when the shear deformation in 
the face sheet, the axial deformation prior to buck-
ling and the axial deformation terms are ignored, the 
second variation of work simplifies to: 
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Now if we further assume that the face sheets are 
so thin that t c then from Eqn (4) we have 
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Hence Eq. (17) becomes 
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Figure 5 Sandwich Column Displacements and Internal Actions 
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From Eq (14), c c f     and is the bending 

rotation of the core. Equation (20) further reduces 
to: 
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Except for the flange bending term  2

,2 f f f xE I  , 

the above expression is similar to the second 
variation of total potential for the column buckling 
problem using Engesser’s approach, Eq.(12). 
Consider the simply supported case and assume: 
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Where mv  is the vertical displacement at the 

midspan and m  is the shear rotation at support x=0. 

Then substituting into Eq. (21), we can solve for the 
buckling load, which is: 

1

faceeuler

facecr c c c c

faceeulerc c c c

c c c c

PP
PP G A G A

PPG A G A
G A G A


 

 
 (23) 

This is the same as Allen’s equation for thick faces 
if Am is substituted for the area of the core Ac.  

3 TEST SPECIMENS AND MATERIAL 
PROPERTIES 

Sandwich columns were constructed for testing in 
compression according to ASTM C 364-99 [1]. Fig-
ures 1 and 4 shows a typical column loaded in com-
pression while being clamped at both ends. The 
sandwich column test specimens were constructed 
from Divinycell H45, H80, H100 and H200 foam for 
the core and face sheets made of Aluminium 2024-
T3. The lengths of the columns varied from 20 to 
500 mm. For each foam type and sample length, two 
sandwich columns were produced. The clear spans 
of the columns were 20, 30, 40, 50, 75 100, 200 and 
500 mm. The length of the clamps in the testing rig 
was 22mm at each end. For each specimen, the 
width of the face sheets was 100 mm. The core 
thickness was 10.5 mm, while the face thickness was 
1 mm. 
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Measurements of the mid-span lateral displace-
ment were used in a Southwell type plot to deter-
mine the elastic buckling load. The shear modulus of 
the core was determined from three point bending 
tests according to ASTM-C-393 [2]. Specimens 
were made from cutting the aluminium sheets and 
foam cores into the required size using a saw.  

The aluminium face sheets were abraded using 
sandpaper and cleaned using acetate acid prior glu-
ing. The adhesive chosen was a rubber-toughened 
epoxy, trade name “Devcon Epoxy Plus". This ep-
oxy was chosen for its high tensile shear strength, 
high tensile-peel strength, and for its ability to bond 
dissimilar substrates. High peel strength is essential 
for composite materials as there is high strength de-
mand in the adhesive during loading. If the adhesive 
peel strength is low, then the face sheets will de-
laminate from the foam core. 

The epoxy adhesive was applied to the facesheets 
and core and let dry for one minute. This allowed the 
epoxy adhesive to fully bond. The facesheets were 
glued onto the foam cores and pressed together us-
ing weights. The weight used during curing was ap-
proximately 170 kgs/m2. The weights remained on 
the specimens for approximately 48 hours. The 
specimens were cured for at least 7 days prior to 
testing. 

The columns were end-clamped according to 
ASTM C 364-99 [1] and placed in a servo-
controlled compression testing machine (see Figure 
2). The specimens were compressed axially at dif-
ferent displacement rates depending on the foam 
density. The displacement rates were 0.50 mm s¯¹, 
0.40 mm s¯¹, 0.25 mm s¯¹ and 0.15 mm s¯¹ for H200, 
H100, H80 and H45 respectively. The specimens 
were compressed at a constant rate until the speci-
mens failed. The applied load and cross-head dis-
placement was measured using the load cell of the 
testing machine. The net lateral deflection of the 
column mid-height was recorded using two linear 
variable differential transformers (LVDT). 
 
Table 1 Shear Modulus Gc (MPa) 
 H45 H80 H100 H200
Test Results 13 21 31 57
Manufacturer [27] 15 

(12) 
27
(23)

35 
(28) 

85
(75)

Manufacturer’s values are average values for the nominal 
densities and within the brackets minimum values for the 
minimum density 

 
Three standard tensile specimens were cut from 

the supplied aluminium and tested in tension. The 
stress strain curve for the 2024-T3 Aluminium is 
shown in Figure 6. The nominal proportional limit 
was 310 MPa while the elastic modulus was 68800 

MPa. The shear modulus of the Divinycell cores was 
determined from three point bending tests according 
to ASTM-C-393 [2]. The results for the shear 
modulus for the Divinycell cores are compared to 
the manufacturer’s guide [27] in Table 1. It is noted 
that generally the measured shear modulus was close 
to the manufacturer’s guide expect for the H200. 

4 TEST RESULTS 

The average measured lateral deflection  at mid-
height was used to plot a Southwell Plot, see refer-
ence [28]. The Southwell is a nondestructive proce-
dure for estimating the buckling load. The Southwell 
plot is a plot of /P versus . The reciprocal of the 
slope of the linear portion of the Southwell plot 
gives an estimate of the buckling load. Table 2 gives 
the estimated buckling loads using the Southwell 
Plot and the peak loads. Figure 7 gives a plot of the 
peak loads versus the Southwell estimate. The pre-
dictions based on the Southwell Plot are consistent 
with the peak loads. Figure 7 gives a plot of the 
peaks load versus the corresponding Southwell Plot 
prediction. The mean difference is approximately 
+5%. Table 3 contains the estimated normal stress 
range in the face sheets based on the peak axial load 
and the stress caused by the lateral bending moment 
calculated from the average lateral displacement at 
mid-span (ignoring the fixed end moment within the 
clamp). The stress range above the proportional limit 
of 310 MPa for the aluminum face sheets, are high-
lighted. Generally the buckled shape was an Euler 
type buckle. For the very short columns of lengths 
20 and 30, the Euler buckle was coupled with buck-
ling of one of the faces within the clamped zone.  

Figures 7-10 shows the load versus lateral dis-
placement plots for columns of length 20, 40, 100 
and 500 mm. It can be seen that there is a significant 
softening of the load carrying capacity in the post-
buckling region for the shorter columns. Figures 11 
and 12 are plots of the normalized buckling load, 

cr c mP G A  based on the peak load, against either the 
column length or the normalized parameter, 

euler c mP G A . Also plotted in Figure 12 is the elastic 
limit based on a proportional limit stress of 310 MPa 
in the face sheets. Figures 11 and 12 do not show an 
upper limit of GcAm the shear crimping or shear 
buckling load. The peak load for the very short col-
umns has a maximum of approximately 3.2GcAm, 
well above the shear crimping limit. The results 
generally follow the predictions of Eq. (5) except for 
some of the very short specimens whose failure load 
was close to the proportional limit of the face sheet 
or where there was buckling of the face sheets with-
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in the clamped zone. There was no shear crimping or 
shear buckling mode type failures. 

5 SUMMARY 

The buckling formulas, theoretical approaches and 
definition for beam internal force actions of 
Engesser and Haringx for isotropic columns and soft 
shear core sandwich columns were detailed and re-
viewed. A important distinction is made between the 
isotropic single material column buckling formula 
attributed to Haringx and the theoretical assumptions 
underpinning his approach. Haringx’s single iso-
tropic material column buckling formula is not ap-
plicable to sandwich columns or to laced columns, 
columns with batten plates or with perforated cover 
plates and columns with open webs, where there is a 
zig-zag shearing pattern of deformations through the 
cross-section. This does not mean that Haringx’s 
theoretical approach and that of Reissner cannot be 
used for sandwich columns. Problems occur when a 
sandwich column with two materials (face sheet and 
core) is modeled by an equivalent column with a 
single effective bending and shear rigidity. In this 
paper it was shown that the theoretical approaches of 
Haringx and Engesser yield the same buckling for-
mula for soft shear core sandwich columns when the 
thickness is very small in comparison to the core 
thickness, and the shear in the face sheets, the axial 

force in the core and the bending within the face 
sheets are ignored. 
To determine whether a shear crimping or shear 
buckling upper limit exists for sandwich columns, 
elastic buckling tests were performed on sandwich 
columns constructed from 10 mm thick Divinycell 
H45, H80, H100 and H200 foam for the core and 1 
mm face sheets made of Aluminum 2024-T3. The 
lengths of the columns varied from 20 to 500 mm. 
The columns were end-clamped according to ASTM 
C 364-99 [1] and placed in a servo-controlled com-
pression testing machine. The width of the speci-
mens was 100 mm and two specimens at each length 
were tested. Measurements of the mid-span lateral 
displacement were used in a Southwell type plot to 
determine the elastic buckling load. The shear 
modulus of the core was determined from three 
point bending tests according to ASTM-C-393 [2]. 
In the tests carried out, some of the very short spec-
imens failed with buckling of the face sheet within 
the clamped region. None of the tests exhibited 
shear crimpling or shear buckling modes and the 
buckling loads for very short columns were much 
higher than the shear buckling limit of Engesser 
GcAm. When the slenderness is very small, the buck-
ling load of the face sheets acting independently 
dominates unless there is failure activated by mate-
rial failure. We would therefore not expect to see 
shear buckling and none were observed in the pre-
sented experiments.

 
Table 2 Experimental Results for Buckling Load 

L 
(mm) 

Pcr  (kN) Peak Load Pcr (kN) Southwell Plat 

H45 H80 H100 H200 H45 H80 H100 H200 

20 52.5 56.3 65.7*  60.2 58.8 69.0*  

20 38.4 50.4 68.7*  42.2 55.6 73.5*  

30 39.1 56 61.8*  41.1 61.3 60.6*  

30 42.9 57.2 60.5  47.9 63.7 57.8  

40 40.5 54.8 59.2  41.7 62.1 55.9  

40 32.1 47.1 58.6  42.2 49.8 58.8  

50 25.4 49.4 38.4  27.8 52.9 34.8  

50  47.5    52.1  

75 25.3 38.5 52.2  28.0 39.5 52.6  

75 17.4 35.5 50.4  17.5 38.3 50.5  

100 18.9 28.1 37.3 67.7* 19.3 35.6 37.7 67.7* 

100 21.1 34.3 43.3 68.6* 21.2 33.5 37.6 70.4* 

200 15.7 21.3 25.1 45.6 16.9 23.3 27.8 51.5 

200 17.5 16.4 36.7 46.0* 18.2 18.2 40.0 52.4* 

500 9.2 21.7 21.5 34.7* 10.8 22.7 23.3 37.0* 

500 11.2 19.1 18.7 28.9* 12.3 19.6 21.3 32.3* 

* Stresses above proportional limit 
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Table 3 Face Sheet Normal Stress Range 

L 
(mm) 

Face Sheet Normal Stress Range (MPa) 

H45 H80 H100 H200 

20 261-262 281-300 328-347*  

20 191-194 251-260 342-354*  

30 195-204 279-296 308-320*  

30 214-229 285-289 301-306  

40 202-202 273-282 295-301  

40 160-169 235-247 292-298  

50 127-139 246-254 191-193  

50   237-237  

75 126-138 192-211 260-271  

75 87-91 177-197 251-264  

100 94-105 140-160 186-211 337-363* 

100 105-110 171-178 216-220 342-364* 

200 79-104 106-135 125-169 227-246 

200 87-98 82-109 183-231 229-332* 

500 46-108 108-156 107-194 173-332* 

500 56-86 95-175 93-181 144-300* 
* Stresses above proportional limit 
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Figure 6 Tensile Stress Strain Curve for 2024-T3 
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Figure 7 Comparison between Peak Load and 

Southwell Plot Estimate 
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Figure 8 Load versus Lateral Deflection for 20mm 

Columns 
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Figure 9 Load versus Lateral Deflection for 40mm 

Columns 
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Figure 10 Load versus Lateral Deflection for 100mm 
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Figure 11 Load versus Lateral Deflection for 500mm 
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Figure 12 Comparison of the Experimental Peak 

Loads with Attard & Hunt [11] Eq. (5) 
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Figure 13 Comparison of the Experimental Peak 

Loads Attard & Hunt [11] Eq. (5) 
 
 
 
 


