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1 INTRODUCTION  

Environmental sciences require continuous collec-
tion of data at varying spatial and temporal resolu-
tions to understand different processes. A number of 
research groups ([2], [3], [4]) have demonstrated the 
use of sensor networks to collect data at scientifi-
cally-relevant resolutions. Even though the technol-
ogy has been employed extensively, these battery 
powered networks need to address a number of 
power-budgeting challenges. The power consump-
tion of some commercially available sensors is listed 
in Table 1. In order to increase the lifetime of the 
network and maximize the collection of informative 
data, one must be judicious in the use of power-
hungry sensors.  

Data collected during events such as rain and 
snow are a subject of interest to many environmental 
studies, particularly to ones engaged in soil ecology. 
Precipitation events serve as major catalysts for eco-
logical activity, and data gathered during these peri-
ods are crucial for understanding many ecological 
processes.  

In this article, we explore the prediction of the 
onset and departure of precipitation events (i.e. rain, 
snow) in the context of an ecology monitoring sen-
sor network [4]. To the best of our knowledge, most 
commercially available precipitation sensors (such 

as [5]) are power-hungry, and are not well-suited to 
be driven by small batteries (~19 Ah) that are em-
ployed in our target sensor networks applications. 
Thus, we need to predict the onset and departure of 
events using low-power modalities such as ambient 
temperature (AT) and barometric pressure (BP) that 
are “cheap” to sample. Figure 1 shows the signatures 
shown by AT and BP before the onset of rain and   
after its departure. We treat the event prediction 
problem as a two-class problem (Precipitation, No-
precipitation) by using data obtained from AT and 
BP. The output of such a predictor-classifier can 
serve as the input to a scheduler, which schedules 
the sampling of a power-intensive CO2 sensor that is 
most informative (from an ecology perspective) dur-
ing such events.  

We focus our attention on extracting a set of fea-
tures that allows us to build a predictor-classifier us-
ing AT and BP. Principal component analysis (PCA) 
is employed to reduce dimensionality and select fea-
tures for two major reasons: 1. Reducing computa-
tion and space overhead, and 2. Improving perform-
ance by avoiding the curse of dimensionality [11]. 
We compare the performance of various classifiers 
differing in complexity (linear to non-linear), execu-
tion and storage costs using these selected features.  
The performance of various classifiers using these 
features is evaluated using misclassification error 
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Figure 1 : An illustration of the typical signatures shown by Air temperature (AT) and Barometric pressure (BP) during the onset 
and departure of rain events. Note the drop in BP prior to the rain events and the deviation of AT from the diurnal pattern. 

and the Brier metric [12]. Experimental results based 
on 6 years of meteorological data show that the ac-
curacy of using AT and BP features in conjunction 
with simple linear classifiers is towards 80% and are 
comparable to the performance of non-linear classi-
fiers built on the same set of features. We find that 
the misclassification error of BP is lower than AT by 
as much as 15%. The brier score decomposition al-
lows us to understand and analyze the probability of 
prediction. We find that quality of the prediction on 
both ends of the probability spectrum is fairly good 
and trustworthy. 

The rest of the paper is organized as follows. In 
Section 2 we introduce background information and 
survey similar bodies of work. In Section 3, we for-
mulate the problem and provide a summary of the 
methods and metrics used to evaluate the solution. In 
Section 4, we present the dataset used for our study. 
The extraction of features is outlined in Section 5. In 
Section 6, we present our results, and finally, in Sec-
tion 7, we conclude. 

2 BACKGROUND 

Precipitation events are known to be the dominant 
catalysts responsible for increase in ecological activ-
ity in the soil. The period during precipitation, and a 
short duration after precipitation stops, is known to 
be the critical period for major ecological activity. 
Data collected during this period can address a num-
ber of questions of interest to soil ecologists. Soil 
CO2 and other gas data are important to address mat-
ters related to soil respiration and exchange of gases 
in the carbon cycle. Sensor networks allow us to 
capture this information remotely in a non-invasive, 

low-cost, continuous fashion. 
 

Table 1: Power consumption of some commercially available 
sensors 

Sensor Type Power Consumption 

Barometric Pressure [6] < 36 μW 

Humidity Temperature [7] 80 μW 

Soil Moisture [8] 19.6 mW 

CO2 (Research) [9] 26 mW 

Precipitation [5]  < 30 mW 

CO2 (Product) [10]  < 4 W 

 
 
In typical environmental monitoring networks, 

each mote is powered by a small battery (typically ~ 
19 Ah). Currently, the power consumed by commer-
cially available gas sensors is significant [10]. A 
number of research groups (e.g. [13]) are working 
towards enabling low power gas sensing technolo-
gies that are envisioned to be used by sensor net-
work applications such as the life under your feet 
[4]. So et al. describe their work in demonstrating a 
technology they refer to as LaserSPECks [9]. The 
goal of this work was to develop a proof-of-concept 
prototype that demonstrates how this low cost gas 
sensing technology can be interfaced with typical 
motes (e.g. Telos) and be used in sensor network ap-
plications. Their early prototype (LaserSPECk v1.0) 
suggests that one can interface a Telos mote with 
this technology, and the power drawn by the CO2 

sensor is as low as 26 mW. However, we note that 
this technology is not yet commercially available, 
and despite reduced energy requirements, applica-
tions would still need to apply selective (or adaptive) 
sampling strategies to balance the power budget to 
increase network lifetime. 
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2.1  Related work 

A number of bodies of work have focused their ef-
forts on detecting events in sensor network applica-
tions. Bulk of the efforts has involved heuristic 
based approaches in an effort to minimize the power. 
Work done by Abadi et al. is one such example of a 
heuristic-based in-network approach. Their system 
declares an event when certain pre-specified condi-
tions are met [14]. Gupchup et al. provide an offline 
PCA-based method to detect events in environ-
mental networks using ambient temperature and soil 
temperature modalities [15]. Obst et al. demonstrate 
the use of an offline echo state network to detect 
anomalies in monitoring gas concentrations in un-
derground coal mines. They conclude that echo state 
networks are more effective in modelling dynamical 
systems and they outperform Bayesian network 
based method [16]. Chang et al. build on this work 
and demonstrate the feasibility of implementing an 
echo state network on a mote-class device [17]. Fur-
thermore, they unify fault detection and event detec-
tion under a general framework. Most of the prior 
work, with the exception of [17], has focused on off-
line event detection. It is worth mentioning that the 
definition of an event differs from system to system. 
Our work is primarily targeting environmental moni-
toring application in which the detection of rain 
events can enable the system to make more mean-
ingful decisions. For example, this work might prove 
useful for agriculture and water-management agen-
cies that require predicting precipitation activity in 
remote locations in a low-cost, low-power fashion.  

Prediction of precipitation can be a complex and 
challenging task. Modern systems have tremendous 
quantities of global spatial patterns and computing 
resources available to them to predict the onset of 
rain. An example of one such system is the service 
run by the Hydrometeorological Prediction Center 
[18]. Mears et al. provide an algorithm that can de-
tect rain using features extracted from wind speeds 
[19]. Providing an exhaustive list of the work being 
done in this field is extremely difficult, and hence, 
we only provide some major ones for completeness. 
Typical environmental monitoring sensor networks 
operate in remote locations under harsh conditions. 
In most practical settings they have limited or no 
connectivity to the Internet. Consequently, they can-
not make use of such prediction services. Under 
these restrictions, they need to predict precipitation 
using data and variables that are collected by the 
network locally.  

3 PROBLEM DESCRIPTION 

In this section, we describe the formalism involved 
in setting up the prediction problem as a 2-class 

classification problem. 

3.1 Precipitation Prediction: 2 class problem 

Let us denote the actual precipitation class-label at a 
given time instant, t+1, by the random variable Yt. 
Let Xt−m denote a d-dimensional feature vector ob-
tained using measurements collected between time 
instants (t − m) and t. Then, (Xt−m, Yt) denotes a pair 
of random variables such that Xt−m :  Ω → ℜd

 and Yt 
is given by Yt = I{precipitation = true, at time instant t + 1}.  

We cast the prediction problem as a 2-class clas-
sification problem with the additional constraint that 
for any given time, t, the class-prediction, 

tŶ  must 
only depend on the observed values, Xt−m for m ≤ t. 
The problem effectively translates to designing a 
classifier that takes as input, features that have been 
observed until the current time instant t, and predicts 
whether or not precipitation will be observed at time 
t+1. In the context of sensor networks, the classifier 
must possess the following desired properties: (1) 
low misclassification rate; (2) low computational, 
storage and communication costs. Typical sensor 
network contains many motes (or nodes). Poten-
tially, these motes could collaborate to obtain a bet-
ter prediction at the cost of communicating among 
themselves. However, in this article we assume that 
each mote makes a prediction independently, and 
hence, do not consider the collaboration aspect of 
this problem. We reserve this as a subject of future 
work. 

3.2  Classification 

For any classifier g : ℜd
 → {0, 1}. The performance 

of g is measured by Prob{g(X) ≠ Y } where X:Ω → 
ℜd

 and Y:Ω → {0, 1}. Using notation borrowed 
from [20], let us define L:L(g) = Prob{g(X) ≠ Y }. A 
good classifier has a low misclassification probabil-
ity. The “optimal classifier” (a.k.a Bayes classifier), 
g*, is one that has the minimum probability of mis-
classification. Mathematically speaking, L(g*) ≤ 
L(g). This gives us a lower bound on the perform-
ance of any classifier g. From here on, we refer to 
L(g*) as L*. The Bayes optimal classifier for a 2-
class problem is given by : 
g*(x) = {1 if Prob{Y = 1|X = x} > 1/2, 
             {0 otherwise. 
Computing the joint probability distribution of X′is 
and Y′i s is not practical. As a result, g* is difficult 
to obtain. However, theoretical results such as one 
furnished by Stone [21] shows that for all distribu-
tions and for some k : k → ∞, k/n → 0, the probabil-
ity of error of the k-NN (given by Lk−NN) classifier 
converges to L*, where k is the number of 
neighbours and n is the number of labelled vectors. 
Furthermore, Stones’ work [21] results in the power-
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ful inequality, L* ≤ LNN ≤ 2L*, where LNN is defined 
as the performance of the 1-NN as n → ∞. For a 
more complete treatment on classifiers, the authors 
strongly urge the reader to refer to [20]. These theo-
retical results provide us some intuition regarding 
how far we are from the optimal classifier.  

3.3 Classification spectrum 

A number of factors are responsible for the selection 

of a classifier for a classification problem. Data 

characteristics, memory and computing constraints 

are some of the major factors that govern this choice. 

Given our problem structure, we are interested in 

comparing the efficiency of a range of classifiers 

without losing sight of the complexity involved in 

the classification. We consider five classifiers rang-

ing from linear ones (e.g. naive Bayes) to non-linear 

ones (k-NN). To this effect, the classifiers used in 

this study are: (1) Naive Bayes (NB); (2) Fisher’s 

linear discriminant (LDA); (3) Support Vector Ma-

chines (SVM); (4) Random Forests (RF) [22], and 

(5) k-NN [23] . In support of the fact that as        

limk/n→,n→∞ Lk−NN = L*, we evaluate Lk−NN  by vary-

ing k. 

3.4 Another metric: Brier Score 

Many classifiers provide us with the probability as-
sociated with the class prediction. The brier score is 
commonly used to evaluate probability forecasts 
[12]. The brier score is the mean squared difference 
between the predicted probabilities and the observed 
event (represented as {0, 1}). Typically, the brier 
score is computed by stratifying the probability fore-
casts into bins. Let n events be distributed in m non 
overlapping bins based on the probability prediction. 
If ekj represents the indicator of jth event falling in 
the kth bin , and pkj represents the probability predic-
tion for ekj , then the brier score (BS) is given by 

BS = ( )
2
 

BS can be decomposed into five components as 

shown by Stephenson et al [24]. BS can be rewritten 

as the following: 

BS = ( k - k)
2
 

       - k - k)
2
 

       + (1- ) 

       + ( - k)
2
 

        - ( - k) ( - k) 

 

The bar symbol represents the mean operator. 

The first, second, and third term represent reliability 

(REL), resolution (RES), and observational uncer-

tainty (UNC) respectively. Within-bin variance 

(WBV) and within-bin covariance (WBC) between 

forecasts and observations are given by the fourth 

and fifth term. Typically, WBV and WBC are small 

and can be ignored. An effective predictor function 

will have a low brier score. REL represents the ex-

tent to which the prediction matches the observed 

events. RES captures the difference between overall 

sample event frequency and the observed frequency 

for each bin. Note that the RES term is negative so a 

large value leads to a reduction in the brier score. 

The UNC term does not depend on the prediction. It 

is purely a function of the sample observations and 

represents the uncertainty in the labelled samples. 

4 DATASET 

Weather data recorded by a NOAA weather station 

is used for our experiments. The Jug Bay (JB) 

weather station is located at the Anne Arundel 

county of Maryland [25]. AT, BP and precipitation 

data recorded by the JB station from January 2003 to 

October 2008 (1811 days) were used for the purpose 

of this study. The sampling interval of this weather 

station is 15 minutes. 

To our knowledge, there is no standard definition 

of an “event”, and as a result, we specify our defini-

tion here. Non-zero precipitation measurements that 

occur within a window of 10 hours from each other 

are clustered together and considered to be a part of 

the same event. Precipitation events that are less 

than 5 mm of cumulative rainfall were not consid-

ered as they were considered to be insignificant. Fur-

thermore, in order to establish data independence, 

we did not consider events whose start time was less 

than 48 hours from the end time of the previous 

event. Using this definition of an event, 124 rain 

events were known to occur for the JB location. The 

24-hr period after the end of the event is extracted 

and is tagged as no-event. In addition to these vec-

tors, a few no-events periods are selected at random 

and a 24-hr period is extracted from these periods. 

The total number of no-event periods in this dataset 

is 135. Next, we describe the process of pre-

processing the AT and BP data that is used in the 

analysis. 

4.1 Data Preprocessing 

The data is first smoothed to mitigate the effect of 

sharp transients caused due to instrument errors or 
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other reasons. The temperature and pressure modali-

ties are both smoothed using a simple moving aver-

age filter with a width of 1 hour. Next, we begin to 

remove the effects of well-known priors in our data. 

AT shows strong trends, diurnal and annual patterns, 

whereas pressure does not show these periodic com-

ponents. The temperature data is de-trended by first 

creating a smooth moving average signal with a 

window of 24 hours, and then subtracting this 

smooth signal from the original signal. The resulting 

signal, S, contains the annual and diurnal compo-

nents, but does not contain the low frequency trend 

signal. In order to remove these periodic compo-

nents, a daily profile is created for each day using 

the detrended series, S. This profile is created by 

pooling together data across consecutive days that 

share the same minute of day (MoD) value. In prac-

tise, we allow a window of one week around the day 

being considered. Then, for each 15 minute meas-

urement of the day being considered, the profile 

MoD value is obtained by averaging across the days 

that fall within the window and share the same MoD 

value. As an example, let  represent the profile 

value for the m
th

 minute for day d. This is obtained 

by taking the mean of seven values i.e. < ... 

 >. We then subtract the daily profile from the S 
series to obtain the residual series referred to as A. 

BP does not exhibit well behaved seasonal compo-

nents. We do not remove the trend and seasonal 

components as done with air temperature. 

5 FEATURE EXTRACTION 

We begin extracting features corresponding to the 

event and no-event periods by making use of well 

known processes and priors for AT and BP. Figure 1 

illustrates the typical diurnal cycle shown by the AT 

modality. This bell-shaped pattern is the most domi-

nant foreground signal and is brought about by the 

day-night cycle. Well-behaved (or typical) days tend 

to adhere well to this dominant foreground signal 

whereas “event days” tend to deviate from it. One 

can also observe the falling BP trend prior to the 

precipitation event. 

The residual series, A, captures the deviation of 

the AT signal from the expected daily pattern. For 

each instance of the event class, the 24-hour period 

prior to the start of the event is extracted from the A 

series. These vectors consist of the AT vectors corre-

sponding to the event class. Similarly, for each in-

stance of the no-event class, the 24 hour period after 

the end of the event is extracted from the A series to 

form the no-event AT vectors. We note that the de-

viation of the signal of an event day also depends on 

the time of the day. Since events start and end at dif-

ferent times of the day, these vectors are normalized 

by cyclically shifting them by an amount equal to 

the MoD value of the event start or end time.  

The onset of precipitation is marked by a sharp 

drop in BP (Figure 1). Specifically, a consistent drop 

in barometric pressure for 12 hours indicates rough 

weather (high chances of a rain event), whereas a 

sharp rise in barometric pressure generally indicates 

a period of fair (event free) weather. The BP event 

vectors are obtained by extracting the 12 hour signal 

prior to the event start time after removing the base-

line signal (mean). Similarly, the BP no-event vec-

tors are obtained by extracting the 12 hour signal af-

ter the event ends. 

Figure 2 (a) : Scree Plot for the BP vectors. 

Figure 2 (b) : Scree Plot for the AT and <AT,BP> vectors. 

Figure 2 : Percentage of variation captured by the principal 
components for the BP, AT and <AT,BP> vectors. 
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In this study, we also investigate the effect of 

combining AT and BP signals on the classification. 

The AT and BP corresponding to each event and no-

event class are combined to represent <AT,BP> vec-

tors. 

5.1 A. Dimensionality Reduction 

The AT and BP vectors are basically transformed 

time signals. As a result, the dimensions are strongly 

correlated to each other. In order to reduce the di-

mensions and remove the correlations, we employ 

the well-known principal component analysis 

method to reduce dimensionality and capture or-

thogonal directions along which the variation is 

maximum. The columns of <AT,BP> are normalized 

such that their standard deviation is 1. Since the 

sampling rate is 15 minutes, the original dimensions 

of the BP, AT and <AT,BP> vectors are 48 (12 

hours), 96 (24 hours) and 144 respectively. The per-

centage of variation captured by the first few princi-

pal components for each set is shown in Figure 2. 

Based on the scree plots, we selected to keep 5, 8 

and 10 components for the BP, AT and <AT,BP> 

vectors. The original data are projected onto these 

principal components to form the feature vectors. 

6 RESULTS 

We begin by describing the methodology used to 

evaluate the performance of various classifiers on 

different modalities (Section 6.1)
1
. In order to estab-

                                                
1
 We made use of the Matlab implementation provided by Franc et al 

for evaluating NB, LDA, SVM and k-NN [26]. The Matlab port pro-

lish an estimate of L∗, we evaluate the performance 

of using the k-nn classifier for varying values of k on 

all three vector sets i.e. AT, BP and <AT,BP> (Sec-

tion 6.2). In Section 6.3, the performance of various 

classifiers is presented, and finally, in Section 6.4, 

we analyse the performance of the three sets using 

the brier metric. 

6.1 Methodology 

In order to evaluate various classifiers, we need to 

split the data in two sets: train and test. In this study,  

We create multiple train sets by re-sampling with re-

placement. This is done to obtain a distribution for 

the performance of various classifiers using the 259 

vectors available to us. For each i, the train set, Ti, is 

created by sampling 66.6% of the vectors uniformly 

at random with replacement. In this case, the size of 

train set is 172 vectors. We then create a list, Ei, of 

all the vectors that are not contained in Ti. The Ei 

vectors comprise the test set for this group. We cre-

ated 100 such groups i.e. i was varied from 1 to 100. 

Beleites et al. refer to this method as out-of-

bootstrap error estimation [28]. We note that this 

method is preferred over the leave-one-out cross-

validation method because we are interested in ob-

taining a distribution of the performance of various 

classifiers. Furthermore, this method is a similar to 

cross-validation as our test set and train set are dis-

joint for every group.  

                                                                                   
vided by Abhishek Jaiantilal was used for evaluating Random Forests 

[27] 

Figure 3 : Performance of k-NN classifiers on AT and BP features. The bars indicate one standard deviation. 
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Figure 4 : Performance of classifiers using AT, BP and <AT,BP> features. 

 
 

6.2 Performance on k-NN classifiers 

The performance of the k-NN classifier was signifi-

cantly lower when using the AT features compared 

to the BP features, as Figure 3 indicates. Using the t-

test, no statistically significant differences were 

found between the k-NN classifiers using BP and 

<AT,BP> features at the 5% significance level, and 

hence, we do not report those results here. The NN 

performances for AT and BP were found to be 0.38 

and 0.26 respectively. These finite sample perform-

ance results represent a weak upper bound for LNN . 

Stone’s theorem implies that L* ≤ LNN/2, and conse-

quently, 0.19 and 0.13 represent a weak upper bound 

of L* using the AT and BP features respectively. 

Even with these estimates, we see that there is room 

for improvement. We also find that the performance 

does not change significantly beyond k = 2 and k = 8 

for AT and BP respectively. 

6.3  Performance using other classifiers 

Figure 4 presents the performance of the NB, LDA, 

RF and SVM classifiers. RF using <AT,BP>  

achieves the best performance, whereas the perform-

ance of the SVM classifier trained using AT was 

found to be the worst
2
. There was no statistically 

significant difference between the median perform-

ance between BP and <AT,BP> for the NB and LDA 

classifiers. In other words, the 95% confidence in-

tervals (given by the notches of the boxplot) for the 

median performance of the NB and LDA classifiers 

                                                
2
 A number of different parameter settings were explored 

for the RF and SVM classifiers. The best results for RF were 

obtained by using the default settings provided by the RF li-

brary. The Gaussian kernel was found to provide the best re-

sults for the SVM classifier. In the interest of space, we do not 

report the results of using other settings.  

overlap. A somewhat surprising and interesting re-

sult was to find that the performance of simple linear 

classifiers is comparable to non-linear and computa-

tionally expensive classifiers. Furthermore, for linear 

classifiers, there is no statistically significant differ-

ence in performance using AT and <AT,BP> fea-

tures. Once again, we use the confidence interval of 

the median to establish statistical significance. 

Lastly, one notes that none of the classifiers achieve 

a performance that is close to the estimate of L* es-

tablished using Stones theorem. 

6.4 Evaluation using the brier metric 

The brier score (BS) is computed as described in 

Section 3.4. It is useful in capturing the reliability 

(REL) and resolution (RES) of the probability fore-

casts. We used 10 probability bins (step size of 0.1) 

to compute the brier score. The probability outcomes 

of the LDA classifier are used to compute the BS for 

a given (train, test) group (cf. Sec.6.1). We chose the 

LDA classifier as it performs almost as well as RF 

and the probability of precipitation (PoP) estimation 

with LDA is significantly easier. Specifically, for 

each (train, test) group, one BS is obtained. Table 2 

shows the median decomposed scores, and the BS 

obtained by combining the decomposed values. As 

mentioned in Section 3.4, the BS is a negatively ori-

ented score. In other words, a low REL value and a 

high RES value are desirable. 

We note that this methodology can be applied to any 

classifier which computes a probability of classifica-

tion. For this purpose, we chose the LDA classifier 

because it performs almost as well as RF and the 

probability of precipitation using LDA is signifi-

cantly easier.  
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Figure 5(a) :  Brier score for AT at different probability bins. 

 
 

Figure 5 (b) Brier score for BP at different probability bin. 

 
 

Table 2: Brier score and its decomposition for AT, BP and 
<AT,BP> 

Type/ 

Score 

BS REL RES UNC WBV WBC 

AT 0.229 0.023 0.042 0.249 0.0007 0.0012 

BP 0.152 0.011 0.106 0.249 0.0008 0.0020 

<AT, 

BP> 

0.141 0.013 0.12 0.249 0.0008 0.0018 

 

We find that the brier score of <AT,BP> and BP 

is significantly better than that of AT. Another useful 

property of the brier metric is that it allows us to ac-

cess the probability forecasts across different bins. 

The brier scores corresponding to each probability 

bin for AT and BP are shown in Figure 5. We find 

that the scores are low at both ends of the probability 

spectrum for BP (Figure 5(b)). This implies that the 

predictions can be trusted more when the class-

conditional probabilities provided by the LDA clas-

sifier is either high or low. This trust information can 

be an input in deciding which predictions to trust 

and which ones to ignore in a meaningful way. In 

comparison to BP, AT does not show low brier 

scores when the probability of prediction is low. 

 

 

7 CONCLUSION 

In this article, we explored the localized prediction 

of precipitation using ambient temperature and 

barometric pressure modalities. The goal of this 

work is to demonstrate that one can use the informa-

tion present in variables that are “cheap” to sample 

to balance the conservation of power and collection 

of informative data for energy-constrained, ecologi-

cal monitoring networks. Towards this goal, we used  

long term data obtained from a weather station to 

emulate the collection of data by a typical sensor 

node. We extracted features using domain knowl-

edge and well known priors for these two modalities. 

Classifiers ranging from linear to non-linear were 

used for the purpose of “predicting/classifying” an 

event or a lack of it. Their performance was evalu-

ated using misclassification error and the brier met-

ric.  

Our analysis demonstrates that one can use a very 

small set of features to obtain classification that is 

significantly better than chance. We find that simple 

classifiers based on these features are able to achieve 

accuracy up to 80%. The performance of linear clas-

sifiers such as naive Bayes and LDA are comparable 

to non-linear classifiers such as Random Forests and 

k-NN. We found that the barometric pressure modal-

ity is significantly more informative than ambient 

temperature in predicting events. Commercially 

available pressure sensors consume very little energy 

(cf. Sec. I) and they can be used effectively to detect 

the onset and departure of precipitation. Moreover, 

we note that most sensor motes have on-board tem-

perature sensors, resulting in no additional hardware 

cost. The brier metric provides us with a way to ana-

lyse probability forecasts, and understand the per-

formance of the linear classifiers in the probability 

spectrum. These results imply that one can design a 

fairly accurate light-weight predictor/classifier that 

is capable of running on the restricted environment 

of a mote.  

Intuitively, the temperature and pressure signa-

tures are more prominent when the magnitude of the 

event is larger. A shortcoming of our study is that it 

does not consider the magnitude of the event or in-

ter-arrival time of events for predictions. In the fu-

ture, we will investigate these aspects in our analysis 

and implement this system on the mote environment. 
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