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1 INTRODUCTION 
In a variety of situations in environmental science 
and engineering, some of them related to national 
security, it is necessary to track and monitor chemi-
cal plumes, to make predictions on their future be-
haviors, and to evaluate potential risk to humans and 
ecological environments.  While it is desirable to 
have data on chemical concentrations collected at 
high spatial and temporal resolutions to facilitate re-
liable predictions, the cost and other logistical fac-
tors associated with installing sampling wells limit 
the monitoring accuracy  and the resolution achieva-
ble.  Specific situations dealing with tracking dis-
solved contaminant plumes in flowing groundwater 
require the collection of water samples from sparsely 
distributed monitoring wells. With current technolo-
gy, these samples are delivered from field sites to 
testing laboratories to conduct chemical analysis to 
determine dissolved concentrations. For accurate 
tracking, this tedious and expensive process has to 
be repeated frequently. Recent advances in Wireless 
Sensor Network (WSNs) have the potential to alle-
viate this labor intensive and time consuming task of 
data gathering.  With wireless sensor nodes (motes) 
that measure and transmit the concentrations in situ 
in sampling wells in real-time, the need for manual 
collection of samples can be avoided. However, in-
stallation and maintenance of a large number of 
WSN nodes (containing sensors interfaced with 
motes) required for large-scale and evolving plumes 
can also be expensive. Minimizing the number of 
sensors will allow for this real-time monitoring 
technology to be a viable option. Sampling at regular 
spatial intervals (e.g., with sensors arranged in a rec-
tangular grid) can be challenging at field sites, 
wherein an unstructured deployment of motes would 
be more realistic. The distribution of such nodes will 
be determined by other factors associated with the 

geography and accessibility of deployment locations 
(e.g., to avoid buildings and other land infrastructure 
features). Effectively using a random deployment of 
sensors to obtain satisfactory results is also of inter-
est. 

Many interesting phenomenon in chemical plume 
tracking, seismic activity monitoring, animal migra-
tion tracking, etc., results in data in the forms of con-
figurations with fairly regular boundaries and 
smooth gradients over the sensor field. Image 
processing algorithms often deals with similar regu-
lar features. A number of transforms such as Dis-
crete Cosine Transform (DCT), Discrete Wavelet 
Transform (DWT) are known to effectively com-
press images with regular shapes. Moreover these 
transforms are realizable as linear transforms and 
can easily be implemented on sensor motes with li-
mited processing capacity. The goal of this work is 
to use such image processing techniques to reduce 
the amount of information transferred back and forth 
on sensor networks, while improving the resolution 
for a given set of sensors. The technique also 
enables the redistribution of the state of a part or the 
entire network back to each node efficiently. This 
feature could be used to develop future smart sens-
ing schemes that operate more intelligently.   

1.1 Related work 

   WSNs are widely used in applications related to 
environmental and habitat monitoring, reconnais-
sance and building automation [1,2,3,4,5]. A WSN 
node, also called a mote, consists of a processor and 
a wireless transceiver interfaced to a sensing device 
to measure the interested phenomenon, [6].  
    The feasibility of using WSNs for subsurface 
chemical plume tracking applications has been dem-
onstrated in [7,8].  Some of the challenges posed in 
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traditional data gathering as described in [9] prevent 
the accurate tracking of the plume. Low mainten-
ance, miniature sensing devices such as electrical 
conductivity sensors [10] are placed in wells at dif-
ferent depths for monitoring the plumes. The WSN 
has to be configured for efficient operation [11], and 
can coupled to numerical models to form a closed 
loop system that uses WSN readings to calibrate the 
model, while the model provides information for da-
ta collection and node activation  [12].  

The potential for sensor readings related to many 
applications to be compressible is well known. Most 
work exploits the local correlation of the readings. 
Ref. [13] provides an information theoretic deriva-
tion, based on correlations of sensor readings, on 
savings possible for one- and two-dimensional net-
works. The Hierarchical Cooperation scheme pre-
sented in [13] achieves logarithmic scaling on traffic 
and schedule lengths. A data compression scheme 
based on wavelet decomposition and reconstruction 
is applied hierarchically at cluster heads in [14] with 
the goal of reducing waste in transmitting raw data 
to the datacenter.  Ref. [15] points out the fact that 
wavelets approximate missing data on sensor read-
ings when applied on a correlated structure. Their 
method - Data Correlation Compression (DCC) re-
lies on Gaussian assumption of sensor data. A 
scheme utilizing historical data to reduce the amount 
of information needed to be transmitted is presented 
in [16]. A localizing scheme based on correlation is 
used to improve the accuracy on the multi-level 
clustering structure. Spatio-temporal correlation can 
be exploited to identify redundant sensors as indi-
cated in [17], where wavelet transform and Fourier 
transform are used for compressing time series on 
individual sensors. 

1.2 Contribution 

A novel approach for reducing the number of sen-
sors used and/or improving the resolution of the 
measurements in plume tracking applications is pre-
sented. With a fairly small fraction of sensor read-
ings, the scheme is capable of approximating the sta-
tus of the entire network to a significant accuracy.  
With the proposed approach, the energy spent ga-
thering the status of the network and then re-
distributing that information back to the network is a 
magnitude less than with the conventional approach. 
Fusion has no effect to the message length, thus it 
requires no additional bandwidth.  

 Section 2 discusses the theoretical background.  
An analysis on the communication cost is presented 
in Section 3. Sensor deployment is addressed in Sec-
tion 4 whilst Section 5 presents the results of the 
work. Scheme and results are evaluated in Section 6, 
followed by conclusions in Section 7.  

2 DISCRETE WAVELET TRANSFORM - 
BASED COMPRESSION 

We view the measurements collected by the sensors 
as pixels of an image. We assume that the underly-
ing chemical concentration image has pixels on a 
fine grid. However, the wireless sensors are random-
ly deployed and only sparsely populate this grid. Our 
objective is to reconstruct the image on the fine grid 
from the sensor measurements. To minimize com-
munication volume, we also wish to compress the 
data collected by each sensor before processing. We 
show in this paper that a simple DWT compression 
provides reasonable results. We start by reviewing 
two-dimensional DWT. 

2.1 DWT compression and reconstruction  

Most real images are compressible in the DWT do-
main. The DWT successively splits an image into an 
approximation component, which captures the 
smooth part of the image, and several detail compo-
nents, as shown in Fig. 1. Roughly speaking, at each 
level, the Hi filter is a “low-pass” filter that passes 
the smoother part of the image and the Gi is a “high-
pass” filter that passes detail components. As the 
DWT branches are traversed the size of the signal 
decreases diadically (down-sampling by 2). Since an 
image is two dimensional, each transformation is 
applied in two dimensions, the horizontal (row-wise) 
and vertical (column-wise) and as we proceed 
through successive branches the number pixels in 
the DWT image is reduced by a factor of 4. 

To compress the image, we discard the detail 
components and only keep the coarsest approxima-
tion component produced by the bottom most branch 
in Fig. 1. 

The DWT however needs to be calculated in a 
distributed fashion, where each sensor computes the 
contribution of its own measurement to the coarse 
approximation term without having the knowledge 
of measurements from the other nodes in the net-
work. To accomplish this, we work with point 
spread functions (PSF) associated with each sensor 
node as we now describe. 

Consider the coarsest approximation branch in 
Fig. 1. The coarsest approximation A for this branch 
can be expressed in matrix form as: 

HV X A   (1) 

where, X is the original image defined under the fine 

grid, V is the DWT matrix in vertical direction, H 

is the DWT matrix in horizontal direction and () de-

notes standard matrix multiplication. 

The vertical DWT matrix 
iV (accounting for 

down-sampling) at the i
th

 level for an nn image is 

given by (j=1…n/2
i
, k=1…n/2

i-1
): 
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Figure 1. Block diagram of wavelet transform 
.
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where, l is the length of the filter and hi’s are the 
scaling coefficients of the filter. 

The horizontal transform 
iH  is the transpose of

iV . The coarse approximation component Ai at 

level-i is given by: 

ii H1iVi AA    (3) 

where, A0 is equal to X. If an L-level DWT the 
coarse approximation component A can be calcu-
lated from (1) with: 

012L1L VVVVV   
  (4) 

1L2L10 HHHHH   



 (5) 

We can write the coarse term approximation to A as: 

  
j,i j,i

HV)j,i( ),j()j,i(X)i,(AA  (6) 

where,  

),j()j,i(X)i,( A HVj)(i, 
 (7) 

is the contribution of the (i,j) pixel X(i,j) to the 
coarse approximation A. The notations (,i) and (j,) 
respectively mean the i

th
 column and the j

th
 row of a 

matrix. Thus we can think of PSF of pixel (i,j) as:  

),j()i,(  j)PSF(i, HV   (8) 

If all X(i,j) on the fine grid were available we 
could obtain the coarse approximation component A 
by simply transmitting PSFs scaled by the corres-
ponding pixel value. The advantage is that each PSF 
can be calculated locally without knowledge of other 
pixels. The size of each PSF matrix is n/2

L 
 n/2

L
. 

In our case sensors sparsely populate the image 
grid and we only have access to a small number of 
pixels at random locations. Nonetheless, we show 
that by combining the PSFs associated with these 
sensor locations we can still obtain a reasonable re-
construction of the chemical plume concentration. 

Coefficients of the PSF depend on the wavelet 
transform and the filter selected. They can be built 
into the sensor motes prior to deployment. Therefore 
computing the contribution of each sensor to the ap-
proximation can be done locally, which involves on-
ly scaling the PSF by the sensor reading. 

Another advantage of this method is that compu-
ting the approximation of a part of or the entire sen-
sor field becomes an addition of the contributions of 
each of the sensors. This allows sensors nodes to 
fuse their contributions to a single message conve-
niently and opportunely. For example, if the sensors 
are reporting to a base station over a tree, an inter-
mediate node will add its coefficient matrix to the 
coefficient matrices it receives from its children 
nodes and transmits the result to its parent. Thus 
there will be only one transmission per link in the 
tree carrying all the information of the sub-tree be-
low. Regardless of the position of a link in the tree 
the size of the composite PSF matrix that the link 
needs to communicate stays the same. 

Once the base-station receives the sum of all con-
tributions the image can be approximated by apply-
ing the inverse-DWT, as shown in Fig. 1. The syn-
thesis filter pair  G

~
,H

~
 and analysis filter pair  G,H  

are quadrature mirror filters, satisfying the perfect 
reconstruction condition [18]. Note that in the syn-
thesis tree all detail components are zero. 

However, this reconstruction can also be done at 
each sensor as will be shortly explained. While it is 
not essential for a node to know about the plume 
spread in the entire flow region, we envision future 
intelligent plume tracking systems where sensing 
operations within a locality may benefit by having 
global information on plumes. A simple extension to 
the scheme provides the ability to re-distribute the 
global information to cluster heads or individual 
sensors efficiently. 

Suppose the coarse approximation component A 
is broadcasted from the base-station, then the in-
verse-DWT approximation can be calculated as: 

HV

~
A
~~

X
~

  (9) 

path in bold - coarsest approximation and 

recovery 

iH  - ith level approximation filter 

iH
~

 - ith level approximation filter 

iV  - ith level vertical approximation 

iV

~
  - ith level vertical reconstruction  

iH  - ith level horizontal approximation 

iH

~
  - ith level horizontal reconstruction 

X  - original image 

Y  - reconstructed image 
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where, A
~
 is the sensor network approximation to the 

coarse approximation component A. The matrices 

V

~
  and H

~
  are vertical and horizontal synthesis 

matrices. They are of the form (4) and (5) respec-

tively, but constructed from elements of H
~

similar to 

(2). 

2.2 Implementation with Daubechies D4 wavelet 

We present a sample implementation of a single lev-
el compression using Daubechies D4 wavelet. The 
coefficients of the H filter are shown in Table 1. 

 
Table 1. Daubechies D4 scaling coefficients __________________________________________________ 
   Coefficient         Value __________________________________________________ 
     h1         (1 + 3) / 42 
     h2         (3 + 3) / 42 
     h3         (3 - 3) / 42 
     h4         (1 - 3) / 42 __________________________________________________ 
 

The single level vertical and horizontal DWT ma-
trices are given by: 
























4321

4321

4321

V
hhhh0000

00hhhh00

0000hhhh

  
 (10) 

T

VH     (11) 

The PSF to be loaded to each node is computed 
using (8). The PSF for a node is a few non-zero ele-
ments often appear as a single patch on a mostly 
empty matrix. During reporting, each node will scale 
the pre-loaded PSF by its measurement. Details of 
the compression algorithm are summarized in Fig. 2.  
 

Compressed_report(reading, reports_from_children) 

 initialize report := [] // empty matrix of the size 

of PSF  

 for i=1:number_of_children 

   report_i := report_of_child_node_i 

   report += report_i  // a matrix addition 

 my_report := PSF*reading // a matrix scaling 

 report += my_report   // a matrix addition 

 forward report to parent 

Figure 2. Pseudo code for the compression algorithm 

 
As a simple example, let us consider the 1010 

matrix of sensor readings shown in Fig 3. 
 

0.00 0.00 1.76 2.47 2.67 2.47 1.76 0.00 0.00 0.00 

0.00 0.00 2.20 2.80 2.98 2.80 2.20 0.00 0.00 0.00 

0.00 1.05 2.47 3.02 3.18 3.02 2.47 1.05 0.00 0.00 

0.00 1.36 2.62 3.14 3.30 3.14 2.62 1.36 0.00 0.00 

0.00 1.45 2.67 3.18 3.33 3.18 2.67 1.45 0.00 0.00 

0.00 1.36 2.62 3.14 3.30 3.14 2.62 1.36 0.00 0.00 

0.00 1.05 2.47 3.02 3.18 3.02 2.47 1.05 0.00 0.00 

0.00 0.00 2.20 2.80 2.98 2.80 2.20 0.00 0.00 0.00 

0.00 0.00 1.76 2.47 2.67 2.47 1.76 0.00 0.00 0.00 

0.00 0.00 0.93 1.96 2.20 1.96 0.93 0.00 0.00 0.00 

 
Figure 3. A sample 1010 measurement matrix 

 
Each sensor is also assigned with a PSF calcu-

lated according to (8). For example node (7,4) would 

calculate its PSF using (8) for a single level com-
pression by multiplying the 7

th
 column of V  and 4

th
 

row of H to produce: 



























00000

000404.0062.0

000188.0029.0

00000

00000

)4,7(PSF  

According to Fig. 3 the reading of the sensor 
node (7,4) is 3.02 . Therefore the contribution of the 
node (7,4) is obtained by scaling PSF(7,4) by 3.02 . 

Similarly, all the nodes will calculate their PSF 
and then scale by their measurement. The approxi-
mation of the entire sensor field is obtained by 
summing up all the approximations generated by in-
dividual nodes. 


 


10

1i

10

1j

)j,i(AA  (12) 



































000.0839.0539.4731.3002.0

066.0026.2204.6474.5638.0

269.0549.3583.6027.6000.2

233.0265.3485.6899.5754.1

008.0456.1794.5011.5210.0

A  

To obtain an approximation to the chemical 

plume image we inverse-DWT is applied on A and 

the resultant matrix is shown in Fig 4. 
 

0.05 0.08 1.60 2.71 2.57 2.77 1.29 0.25 0.20 -0.12 

0.08 0.15 1.83 3.08 2.89 3.08 1.49 0.38 0.25 -0.15 

0.41 0.76 2.12 3.21 3.03 3.19 1.91 1.02 0.37 -0.34 

0.65 1.23 2.39 3.40 3.22 3.36 2.28 1.52 0.48 -0.49 

0.62 1.16 2.35 3.37 3.19 3.33 2.22 1.45 0.46 -0.47 

0.65 1.23 2.39 3.39 3.21 3.35 2.28 1.53 0.48 -0.49 

0.34 0.64 2.10 3.24 3.06 3.22 1.86 0.91 0.35 -0.31 

0.13 0.23 1.90 3.14 2.95 3.14 1.57 0.47 0.27 -0.18 

0.07 0.12 1.49 2.52 2.41 2.61 1.22 0.26 0.19 -0.12 

-0.04 -0.07 1.15 2.03 1.99 2.19 0.88 -0.02 0.10 -0.05 

 
Figure 4. The reconstructed measurement matrix 

3 EXCHANGE OF SENSOR DATA 

Consider a network in which the sensors are 
placed on an n  n grid as shown in Fig. 5(a) with a 
tree communication structure rooted at the center of 
the grid. We assume that a node is capable of com-
municating with its eight immediate neighbors. The 
levels of the tree then form co-centric squares, with 
the maximum depth of the tree at n/2. The average 
depth of a node from the root is n/6. 

Communication cost is two folds: reporting and 
re-distributing. During reporting, sensors report their 
readings to the root. Then, root informs the status of 
the network to each of the sensors during re-
distributing. Reporting costs can be alleviated by 
making sensors not report, if the reading is null. 
However, the node still needs to take part in com-
munication to relay reports from the sub-tree des-
cending from itself. 
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Figure 5. (a) Nodes placed in a grid with root at the center (b) Levels of nodes (c) A random node deployment with a tree communi-
cation structure 

3.1 Conventional reporting 

Under the conventional monitoring scheme, each 
node reports its measurement along with its ID or 
coordinates. This report has to be to the root, i.e. n/6 
times on average. Since there are n

2
 nodes in the 

network, the total reporting cost is O(n
3
).If the null 

readings are not transmitted, then communication 
cost reduces to O(kn

2
), where k is the number of 

nodes having a non-zero reading. Further, overhead 
in transmitting individual reports as separate packets 
can be saved by packing a few if not all reports re-
ceived from the sub-tree to a single message along 
with its report. Such a fusion saves overhead cost, 
yet no savings are made on the amount of payload 
transmitted. It is to be noted that in the conventional 
scheme, reporting the location and the reading pro-
vides no loss of information. 

3.2 Compressed reporting, fusion and recovering 
missing data 

Compressed reporting exploits the compressibility of 
data. Instead of reporting the reading and location 
information tuple, nodes report wavelet coefficients. 
Further, data is fused by adding coefficient matrices. 
As in conventional scheme, the nodes having a null 
reading do not contribute to the coefficient matrix. 

Each contributing node will produce a coefficient 
matrix, which is a small patch of non-zero elements. 
By putting together these patches, the approximation 
for the entire matrix is formed. Patches are in fact 
added onto the coefficient matrix - which enable an 
effective fusion scheme, where the message length 
does not change. Under conventional reporting, 
reading of each node was stored in the message sep-
arately. Such would lengthen message length as the 
message arrives at the root. But with the compressed 
reporting, nodes keep adding their contributions onto 
the existing message. Therefore the length of the 
message is not affected. 

The size of the coefficient matrix is mm, with m 
equal to n/2

L
, where L is the number of levels of 

compression applied. When fewer nodes have read-
ings, instead of transmitting the entire coefficient 

matrix, the patch and its location information can be 
transmitted to save cost. 

Compressed reporting imposes a smoothing oper-
ation on the measurements. Thus it automatically 
approximates readings of the locations which pro-
vided no input. If a malfunctioning node feeds in an 
abnormally large contribution (an outlier), that 
would be suppressed as well. 

Let us demonstrate recovering missing data 
points using the matrix in Fig 3 by randomly drop-
ping some 10 measurements out of the 100. The re-
sultant is shown in Fig 6. This doesn’t correspond to 
a sparse sensor network, but still demonstrates how 
missing data points are handled. The actual chemical 
plume example presented in Section 5 corresponds 
to a truly sparse network where the sensors populate 
only 25% of the grid points. 

0.00 0.00 1.76 2.47 2.67 2.47  0.00 0.00 0.00 

0.00 0.00 2.20 2.80 2.98 2.80 2.20  0.00 0.00 

0.00 1.05 2.47 3.02 3.18 3.02 2.47 1.05 0.00 0.00 

  2.62  3.30 3.14 2.62 1.36 0.00 0.00 

0.00 1.45 2.67 3.18 3.33 3.18 2.67 1.45 0.00 0.00 

0.00 1.36 2.62 3.14 3.30 3.14 2.62  0.00 0.00 

0.00  2.47 3.02 3.18 3.02 2.47 1.05 0.00 0.00 

 0.00 2.20 2.80 2.98 2.80 2.20 0.00 0.00 0.00 

0.00 0.00 1.76 2.47 2.67  1.76 0.00 0.00 0.00 

0.00 0.00 0.93  2.20 1.96 0.93 0.00 0.00 0.00 

Figure 6. A sample 1010 measurement matrix with 10 miss-
ing values 

The approximation derived from the available 
nodes if shown in Fig 7(a) and the reconstruction is 
shown in Fig 7(b). By comparing Fig 7(b) with Fig 
3, it can be noted missing points are approximated 
quite closely compared to the range of measure-
ments. 

0.305 5.351 5.603 1.045 -0.031 

1.139 3.701 6.462 3.413 -0.085 

1.802 6.027 6.730 2.595 -0.238 

0.179 5.758 5.741 2.026 0.000 

0.210 2.510 3.451 0.649 0.000 

(a) 

0.09 0.16 1.56 2.61 2.39 2.50 1.09 0.09 0.14 -0.10 

0.10 0.19 2.06 3.44 2.98 3.01 1.33 0.11 0.16 -0.12 

0.29 0.52 1.58 2.42 2.78 3.27 1.89 1.01 0.40 -0.28 

0.43 0.77 1.37 1.89 2.80 3.60 2.36 1.67 0.58 -0.41 

0.51 0.96 2.06 2.98 3.11 3.45 2.03 1.08 0.39 -0.37 

0.61 1.16 2.51 3.64 3.34 3.42 1.91 0.83 0.30 -0.38 

0.22 0.42 2.11 3.39 2.99 3.05 1.71 0.75 0.32 -0.25 

-0.03 -0.07 1.93 3.39 2.80 2.77 1.54 0.63 0.32 -0.15 

0.07 0.12 1.24 2.08 1.99 2.15 1.03 0.26 0.17 -0.10 

0.07 0.13 0.69 1.11 1.34 1.62 0.62 -0.04 0.06 -0.04 

(b) 

Figure 7. (a) Approximation for the sensor readings with miss-

ing nodes (b) Reconstruction 
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3.3 Hybrid reporting 

Compressed reporting captures the status of the 
(partial) network by an mm matrix, instead of the 
number of nodes many tuples. However, at lower 
depths of the tree, where only a few nodes observe 
some reading, reporting the mm matrix or the coef-
ficients patch may be too costly. The hybrid scheme 
proposes to use conventional scheme until the num-
ber of nodes with a non-zero reading is below ½ 
mm. Once this threshold is reached, readings are to 
be transformed to the mm coefficient matrix.  Im-
plementation of the hybrid scheme is explained in 
Fig 8. Until transmitting the coefficient matrix is ef-
fective than reporting raw data, conventional scheme 
is followed, denoted by reporting_mode : 0. When 
the list of raw data and the coordinate information 
grow past the threshold, the coefficient matrix is 
formed. Thereafter, all nodes contribute in the com-
pressed mode.  

 
Get_Mode_of_Reporting() 

 enum mode {0,1} // 0:raw data, 1: compressed data 

 message_length:=0 

 for i=1:number_of_children 

  receive message_i 

  message_length += length(message_i) 

 if message_length > 0.5*m^2 

  reporting_mode:=1 

 else 

  reporting_mode:=0 

Construct_Message() 

 if reporting_mode==0 

  message:=[]; 

  for i=1:number_of_children 

   receive message_i 

   message:=[message; message_i]; 

 if measurement != 0 

   message:=[message; [coordinates, measure-

ment]]; 

 if reporting_mode==1 

  message:=[]; 

  for i=1:number_of_children 

   receive message_i 

   message += message_i 

  message += PSF*reading 

Transmitting_Message() 

 if reporting_mode==1 

  transmit(message) 

 if reporting_mode==0 

  if length(message) < 0.5*m^2 

   transmit(message) 

  else 

   msg=[]; 

   for i=1:length(message) 

    coord=message_i(coordinate) 

    value=message_i(measurement) 

    msg += PSF(coord)*value 

   transmit(msg) 

 
Figure 8. Pseudo code for hybrid reporting scheme 

3.4 Re-distribution 

Future smart sensing schemes on large networks 
would benefit by being aware of the state of the en-
tire network. Thus a phase where the status of the 
network is re-distributed back to the network is dis-
cussed here. The methodology of re-distributing sta-
tus of the network is intuitive from the hybrid 
scheme. The status of the nn network is com-

pressed to mm. But if the number of non-zero val-
ues in the network is below ½ mm, re-distribution 
is more effectively done with a conventional ap-
proach, where the location and reading information 
tuple is broadcast. Otherwise the compressed matrix 
delivers the status of the network more effectively. 

Then at each node, the inverse transform is per-
formed to recover the status of the entire network. 
By doing so each and every node becomes aware of 
the entire network. 

3.5 Potential issues 

Here we discuss issues associated with the 
scheme that would be of interest to certain applica-
tions. 
 Reconfiguring nodes: since each node use a 

unique combination of V and H, reconfiguring 
can be tedious. However, using nodes programm-
able over the network would alleviate the effort. 

 Speed of the plume: a cycle of reporting and dis-
semination is expected to complete while the 
plume is effectively stationary. If the cycle is a 
slow process, the picture built using the reports 
would be inaccurate. 

 Ringing effects: this is an issue natural to lossy 
compression. Since the high-frequency compo-
nents are discarded, a slight ringing artifact builds 
on the image. 

 Blurred image: approximation is analogous to a 
low-pass filter, which smoothens the image. Thus 
reconstructed images would be less crispy and 
more blurred. 

 Effects of missing contributions: although the 
scheme interpolates the missing locations quite 
accurately according to a smoother description of 
the plume, it draws energy from the available 
contributions. Thus missing contributions causes 
noise on the available. 

 Poor alignment: the simulation results presented 
later assumes a worst case of a purely random 
deployment. A pure random deployment would 
have a few cluttered nodes and a few blank areas. 
Thus the approximation would be more biased to 
the cluttered locality and less towards the empty 
regions. However, actual deployments are not 
purely random and will suffer less from such ef-
fects. 

3.6 Analytical results 

To identify uniquely and for communication sen-
sor nodes need ≳ log2n

2
 bit long address. If we as-

sume the reading produces some b bit floating point, 
the cost of reporting under conventional scheme is ≈ 
(log2n

2
 + b)n/6 per node. If only k nodes read non-

zero values and report, then the total reporting cost 
is ≈ k(log2n

2
 + b)n/6. Pure compressed reporting 

scheme requires transmitting an mm matrix. Thus 
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the reporting cost would be km
2
b`n/6, where b` is 

the length of a coefficient. Reporting cost can be 
saved by reporting patches instead of the entire ma-
trix, where applicable. Moreover, the hybrid scheme 
would provide much savings. 

Reporting is economical for certain choices of 
wavelets and levels, which also determine the re-
quired precision of the coefficients. Nonetheless, re-
porting in compressed form is essential to implement 
compressed re-distribution in a distributed form. As 
well to interpolate for the missing location, com-
pression scheme has to be employed at reporting, ir-
respective of the communication cost. Re-
distributing is effectively achieved for large values 
of k and n, i.e. for large network with a large fraction 
of nodes reading non-zero measurements. 

The key advantage of the compressed reporting 
and re-distributing is the information of a vast net-
work is represented using only a few coefficients. 
Thus less information needed to be transmitted in 
order to deliver the status of the network. 

4 SENSOR DEPLOYMENT 

When sensor nodes are placed on a regular grid, they 
can be matched to pixels of an image (Fig. 5(a) and 
Fig. 5(b)). To calculate the contribution made by 
each pixel (sensor) for the approximation, each sen-
sor is fed with a corresponding PSF. Thus at report-
ing, each node will scale its PSF by the reading and 
report the resultant matrix. Further, nodes fuse read-
ings simply by adding the contribution matrices. 

When all the contribution matrices of all the sen-
sors are added, the approximation for the entire sen-
sor field is formed. This approximation can be then 
transmitted back to the sensor field, so that each of 
the sensors learns the status of the entire network. 

When constructing the approximation, if the con-
tribution of some of the pixels were not available, an 
interpolated value will be automatically assigned to 
those pixels. This relaxes the need of a complete 
grid which is attractive for many applications, and is 
discussed next. 

4.1 Random points on a grid 

A random deployment of sensors can be treated as a 
sparse deployment on a grid (Fig. 5(c)). As pointed 
out above, DWT based approximation scheme fills 
out the missing grid points with interpolated values 
based on the available grid points automatically. 
This allows using the same scheme even for a ran-
dom deployment of sensor nodes. 

As before, each node is assigned with its PSF ma-
trix based on the grid point the sensor is located. The 
rest of procedure is the same. When reconstructing, 
an image of the size of the grid is formed, where 
missing grid points are assigned with an interpolated 
value based on the wavelet used. 

4.2 Representing a more realistic scenario 

Deploying sensors on an exact grid is difficult and 
not economical for many environmental sensing ap-
plications. A deployment exhibiting characteristics 
of a random deployment can be considered more 
realistic. The nodes can be considered to be random-
ly placed at points on a finer grid for computational 
convenience. Another issue with wireless sensor 
networks is the availability of the nodes. At a given 
time it is quite likely that a significant fraction of the 
nodes may either be sleeping, or even dead. Once 
the random deployment is treated as a sparse dep-
loyment over a fine grid, unavailability can be ac-
counted as a much sparser deployment. Thus when 
resolved, measurements will be interpolated for on 
each point on the fine grid. 

5 RESULTS 

In this section we evaluate the compressed data re-
porting and dissemination scheme using a dataset 
corresponding to a subsurface plume. The dataset 
and numerical results are presented next. 

5.1 Synthetic Plume Data Set 

The data that is needed in field problems will come 
from a set of sensors that are installed in water quali-
ty monitoring wells. As such data set was not avail-
able, a synthetic data set using a groundwater flow 
(MODFLOW) transport model (MT3DMS) was 
generated [19,20,21,22]. Synthetic data emulating a 
propagating plume over a period of 3 years, collect-
ing daily samples are used as experimental data for 
this work. The synthesizer software allows placing 
sensors and making measurements at any desired lo-
cation. By placing sensors at a complete fine grid, 
the actual plume is recognized. Then sensors are 
placed at random location for the experiments. Sen-
sor field is represented as a 6464 pixel image. The 
readings are compressed using a two-level Daube-
schie-4 wavelet. The compressed image is 1616. 
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5.2 Numerical results 

At each time interval, selected based on plume track-
ing application, a snapshot of the sensor field is built 
using the compressed reporting method described in 
Section 3. For our experiment, the time interval was 
selected to be a day. The error is defined as the defe-
rence between the calculated value and the actual 
value normalized to the largest reading (which is the 
range of the measurements), and expressed as a per-
centage. 

Four versions of errors are defined. Given a snap-
shot, the mean of the errors and the maximum of the 
errors can be taken. Then over the entire sensing du-
ration (3 years in our case) the mean and the maxi-
mum of above two can be taken. 

Transmission cost is evaluated in terms of the 
number of transmissions. The experiment used 
double precision floating point values for both mea-
surements and coefficient matrices. Thus the actual 
transmission cost is a factor of the number of trans-
missions made. 

5.2.1 Accuracy 
The proposed scheme exploits the effectiveness of 
lossy compression. Inevitably, some of the informa-
tion is destroyed during the reporting phase. Table 2 
assesses the error introduced by the approximation. 

 
Table 2. Error of approximation   

 
Mean over entire sensing 

period 

Max over entire sensing 

period 

 
Mean over 

a snapshot 

Max over 

a snapshot 

Mean over 

a snapshot 

Max over 

a snapshot 

Error (%) 2.5 55.4 9.5 82.4  
 

More realistic networks are represented as a 
sparse deployment of nodes over a grid. Their per-
formance is comparable when a large fraction of 
nodes are unavailable on a grid. Table 3 summarizes 
error performance when 25%, 50% and 75% of the 
nodes are unavailable. Table 4 shows the mean and 
the standard deviation of the mean error over 100 
random network settings. It can be noted that mean 
error is small and it varies very little. 
 
Table 3. Effect of partial availability on the error  

Dead nodes 25% 

  
Mean over entire 

sensing period 

Max over entire 

sensing period 

Error compared 

against 

Mean 

over a 

snapshot 

Max over 

a 

snapshot 

Mean 

over a 

snapshot 

Max over 

a 

snapshot 

Actual  3.2 65.9 10.5 96.8 

Approximation 2.7 24.9 4.9 47.7 

Dead nodes 50% 

Actual  4.9 76.7 13.6 98.8 

Approximation 5.3 41.1 9.0 82.6 

Dead nodes 75% 

Actual  7.0 87.9 18.4 103.5 

Approximation 7.9 56.1 11.8 84.9 

 

Table 4. Mean and standard deviation of the accuracy  

Dead node % 
Error compared 

against 
Mean 

Standard 

deviation 

25 
Actual 3.2 0.09 

Approximation 2.7 0.16 

50 
Actual 4.9 0.14 

Approximation 5.3 0.19 

75 
Actual 7.0 0.15 

Approximation 7.9 0.16 

5.2.2 Communications cost savings 
Compression based data gathering and re-
distributing scheme saves floating point transmis-
sions by a factor of 5 in average. When hybrid 
scheme is employed instead, the saving reaches a 
factor of 10. Figure 9 shows the total cost of using 
the three schemes over the sensing period. 

Largest factor of the savings is accounted to the 
re-distributing phase as shown in Fig. 10. However, 
for the re-distribution to be implemented in a distri-
buted fashion, the reporting scheme has to be im-
plemented in either the compressed form or the hy-
brid form. The hybrid scheme improves the 
compressed scheme further by a factor of 2 in aver-
age. The performance of the hybrid scheme over the 
compressed scheme is presented in Fig. 11. 

 
Figure 9. Cost of re-distributing sensor information over the 
entire network over time. 

 

 
Figure 10. Amount of floating point transmissions saving by 
compression over time. 

5.2.3 Approximating missing data 
DWT coefficients automatically approximate values 
for the missing locations during reconstruction. Fig-
ure 12 displays the approximation capacity of the 
scheme. Only 25% of the sensors were activated in 
the sensor field. This could also be interpreted as, 
only 25% of the grid points actually contained sen-
sors. Figure 12(a) shows a snapshot of the plume to 
be detected. But only some random 25% of the grid 
points indicated in Fig. 12(b) are available for mea-
surements. The non-zero measurements provided by 
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the available sensors are indicated in Fig. 12(c). 
With coefficients for these non-zero measurements 
the plume is approximated as in Fig. 12(d). It is to be 
noted that the mean error between the approximated 
reconstruction using only 25% of the measurements 
is only 7% as shown in Table 3. 

 

 
Figure 11. Amount of floating point transmissions saved using 
hybrid reporting instead of compressed reporting over time. 

6 DISCUSSION 

The goal of the presented scheme is to gather and re-
distributed sensor data from each of the sensors to 
entire network cost effectively. The communication 
structure is a tree rooted at the center of the network. 
All the nodes observing the interested phenomenon 
generates a report and pass it up the tree. Thus a de-
scription of the entire network is generated at the 
root. Then the root sends down this information back 
to the network, making all the nodes aware of the 
entire network. 

Under conventional scheme each node reports its 
reading and the location information, and all the 
nodes take part in passing this information to the 
root. The root collects all the information and build 

giant picture of the network which is then passed 
down to the network. The conventional scheme does 
not take into account the compressibility of data. Al-
though it preserves perfect accuracy, most applica-
tions tolerate errors to a certain degree to account for 
noise which is inevitable in measurements. Com-
pressed re-distributing scheme proposed exploit the 
tolerance to mild loss of information. The coeffi-
cients also enable data fusion. Thus when multiple 
messages are to be transmitted on the same link, 
they can be fused to a single message saving over-
head. Moreover, the fusion does not change the data 
length, whereas under the conventional scheme the 
length of the message is increased when multiple 
messages are packed. 

Compressed scheme reduces the operations at the 
root. Under the conventional scheme, the root has to 
gather and form the giant message containing infor-
mation of the entire network. In the compressed 
scheme the root has no more operations than a regu-
lar node in the network. It sums the coefficients and 
pass on to the children nodes. 

Although compressed reporting alone may not be 
communication effective, it is essential to facilitate 
interpolation of missing points, improve resolution 
and for a distributed implementation of the dissemi-
nation scheme. So that the burden on the root is alle-
viated, and producing a distributed deployment of 
the scheme. The hybrid scheme utilizes the effective 
components from both the conventional and com-
pressed schemes. It prevents forming a large coeffi-
cient matrix where data is effectively transmitted 
conventionally, but also applies compression later 
on, to utilize the advantages in both the schemes. 

 
Figure 12. (a) The actual plume (b) a sample deployment of sensors (c) non-zero reading provided by 25% of sensors (d) approx-
imate plume reconstructed. 
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Computation requirement at sensors nodes are 
commendable as well. Compression and decompres-
sion require matrix multiplication, which is an O(n

2
) 

floating point operation. Fusion requires matrix ad-
dition which is O(n) floating point operation. The 
PSF needed for each node is proposed to be pre-
loaded to each node. The hybrid scheme requires a 
list of potential PSFs of its children which can also 
be preloaded.  

7 CONCLUSIONS 

The scheme estimated the state of the entire network 
within a 7% error bound using only 25% of the mea-
surements, and demonstrated a communication sav-
ings by factor of 10 when applied for the plume data. 
Thus the scheme is capable of improving resolution 
of the measurements made, and also to reduce the 
number of sensors to be used to achieve a given er-
ror bound. 

Hybrid scheme exploits the effective components 
from conventional and the compressed reporting 
schemes and cuts down the communication cost by a 
magnitude. Computation and memory requirements 
needed for all the operation in the feasible range for 
most common place sensor motes. 

8 REFERENCES 

1. K. Romer, F. Mattern, "The Design Space of Wireless Sen-
sor Networks," Wireless Communications, IEEE , vol.11, 
no.6, pp. 54- 61, Dec. 2004. 

2. F. Shu, M. N. Halgamuge and W. Chen, “Building Automa-
tion System Using Wireless Sensor Networks: Radio Cha-
racteristics and Energy Efficient Communication Proto-
cols”, Special Issue on Sensor Network for Building 
Monitoring: From Theory to Real Application, Electronic 
Journal of Structural Engineering, EJSE, pp 66-73, 2009. 

3. M. N. Halgamuge, T. K. Chan and P. Mendis, “Experimental 
Study of Link Quality Distribution in Sensor Network Dep-
loyment for Building Environment”, Special Issue on Sen-
sor Network for Building Monitoring: From Theory to Real 
Application, Electronic Journal of Structural Engineering, 
EJSE, pp 28-34, 2009. 

4. L.M.R. Peralta, L.M.P.L. Brito, and B.A.T. Gouveia “The 
WISE-MUSE Project: Environmental Monitoring and Con-
trolling of Museums based on Wireless Sensor Networks”, 
Special Issue on Sensor Network for Building Monitoring: 
From Theory to Real Application, Electronic Journal of 
Structural Engineering, EJSE, pp 46-57, 2009. 

5. S. Alahakoon, D.M.G. Preethichandra, and E.M. Ekanayake, 
“Sensor Network Applications in Structures - A Survey”, 
Special Issue on Sensor Network for Building Monitoring: 
From Theory to Real Application, Electronic Journal of 
Structural Engineering, EJSE, pp 1-10, 2009. 

6. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayir-
ci, "Wireless sensor networks: A survey", IEEE Transac-
tions on Wireless Communications, Computer Networks, 
2002, 38, pp.393-422. 

7. L. Porta, T. H. Illangasekare, P. Loden, Q. Han, and A. P. 
Jayasumana, “Continuous Plume Monitoring Using Wire-
less Sensors: Proof of Concept in Intermediate Scale Tank”, 

Journal of Environmental Engineering, September 2009, 
volume 135, issue 9, pp.831-838. 

8. P. Loden, Q. Han, L. Porta, T. Illangasekare, A. P. Jayasu-
mana, "A Wireless Sensor System for Validation of Real-
time Automatic Calibration of Groundwater Transport 
Models,"  The Journal of Systems and Software,  Elsevier, 
82 (2009) 1859–1868. 

9. R.W. Puls, and  C.J. Paul, "Multi-layer sampling in conven-
tional monitoring wells for improved estimation of vertical 
contaminant distributions and mass", Journal of Contami-
nant Hydrology, 25, 1997, pp.85-111. 

10. A. Kaya, and H.Y. Fang, "Identification of contaminated 
soils by dielectric constant and electrical conductivity", 
Journal of Environmental Engineering, 123(2), 1997, 
pp.169-177. 

11. A. P. Jayasumana, Q. Han and T. Illangasekare,  "Virtual 
Sensor Networks - A Resource Efficient Approach for  
Concurrent Applications,"  Proc. 4th International Confe-
rence on Information Technology: New Generations (ITNG 
2007), Las Vegas, NV, April 2007. 

12. Q. Han, A. P. Jayasumana, T. Illangasekare & T. Sakaki, 
"A Wireless Sensor Network Based Closed-Loop System 
for Subsurface Contaminant Plume Monitoring,"  Proc. 
22nd IEEE International Parallel and Distributed 
Processing Symposium, Miami, FL, April, 2008. 

13. T. Elbatt, "On the trade-offs of cooperative data compres-
sion in wireless sensor networks with spatial correlations", 
IEEE Transactions on Wireless Communications, May 
2009, vol.8, no.5, pp.2546-2557. 

14. J. Zhuo, C. Meng, and M. Zou, "A Task Scheduling Algo-
rithm of Single Processor Parallel Test System", Eighth 
ACIS International Conference on Software Engineering, 
Artificial Intelligence, Networking, and Parallel/Distributed 
Computing, (SNPD 2007) July 30 2007-Aug. 1 2007, vol.1, 
pp.627-632. 

15. H. Jin, Q. Ren, J. Li, and Yong Shi, "An Approximate 
Query Processing Method Based on Data Correlation in 
Sensor Networks", International Conference on Embedded 
Software and Systems (ICESS '08), 29-31 July 2008, pp13-
18. 

16. A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, “Dis-
semination of compressed historical information in sensor 
networks”, (Oct. 2007), The VLDB Journal 16, issue 4, pp 
439-461. 

17. A. Guitton, A. Skordylis, and N. Trigoni, “Correlation-
based data dissemination in traffic monitoring sensor net-
works”, IEEE Wireless Communications and Networking 
Conference (WCNC 2007), Hong Kong, 11–15 March 
2007. 

18. M. Vetterli, and J. Kovacevic, “Wavelets and subband cod-
ing”, Prentice Hall, 1995. 

19. K. Barnhart, “Re-conceptualizing groundwater transport 
models 2 in the wireless sensor network data context”, 
PhD Dissertation, Environmental Sciences and Engineer-
ing, Colorado School of Mines, 2010. 

20. K. Barnhart, I. Urteaga, Q. Han, A. Jayasumana, and T. Il-
langasekare, “On integrating groundwater transport models 
with wireless sensor networks,” Ground Water, 48(5), 
pp771-780. 

21. C. Zheng, and P. Wang. “MT3DMS: A modular 3D mul-
tispecies transport model for simulation of advection, dis-
persion, and chemical reactions of contaminants in 
groundwater systems,” US Army Engineer Research and 
Development Center Contract Report SERDP-99-1, 1999. 

22. A. Harbaugh, E. Banta, M. Hill, and M. McDonald. “the 
USGS modular ground-water model user guide to modula-
rization concepts and the groundwater flow process,” 
USGS Open File Report 00-92. Reston, Virginia: USGS, 
2000. 

 


