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1 INTRODUCTION 

Wooden roof trusses with nail-plate joints are widely 
employed in modern roof construction. In Sweden, 
for example, roof trusses with nail-plate joints 
constitute the main load-carrying system of the roof 
structure in more than 50% of all residential 
buildings. This large volume makes a detailed 
understanding of the mechanical behaviour of these 
structures urgent, as it is necessary in order to secure 
a satisfactory safety and serviceability of the 
structures and to achieve an optimal use of resources 
in terms of material consumption and manufacturing 
control. 

In addition to a detailed mechanical modelling of 
ideal roof trusses and nail-plate joints it is important 
to consider uncertainties in material properties and 
in geometrical imperfections. Such uncertainties may 
significantly effect the stiffness and load-carrying 
capacity of wooden roof trusses. Variations in 
stiffness and strength of wood material have been 
studied by several researchers, e.g. Isaksson (1999), 
and probabilistic models for wood have been applied 
on roof trusses, aiming at a better understanding of 
the actual safety levels (Hansson 2001). Research 
with a probabilistic outlook on geometrical 
imperfections in nail-plate joints have, however, to 
the knowledge of the author, not been carried out 
before. The present paper is a result of ongoing 
research on roof truss modelling and geometrical 

imperfections. It presents models and calculations on 
the influence of misplaced nail-plates and gap 
between wooden members in roof trusses. The 
research also aims at development and comparison 
of methods for probabilistic analysis and 
optimization, that can be efficiently employed in 
conjunction with non-linear finite element models of 
roof trusses and structural systems in general. 

2 MODELLING OF ROOF TRUSSES 

2.1 Overview of methods 

In commercial software for roof truss analysis the 
nail-plate joints are typically regarded as either rigid 
or pin-ended and the wooden members are modelled 
by beam elements with a linear elastic behaviour. 
Several such models have been collected and 
evaluated by Petersson and Olsson (1994) and 
Olsson and Rosenqvist (1996). In reality, however, 
nail-plate joints have complicated stiffness 
properties. The load-deformation relation cannot be 
expected to behave linearly and when approaching 
the limit-state loading the failure of a joint, and 
thereby the entire truss, may be caused by different 
phenomena such as fracture in the wooden members, 
pull-out behaviour of the nails or buckling of the 
nail-plates. Thus, this type of modelling only gives 
rough predictions of failure or unacceptable 
deformations through indirect criteria specified by 
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ABSTRACT: The influence of gap between wooden members and displaced nail-plates in roof trusses is 
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structural codes. The codes in turn must rely on 
more advanced models and calculations in 
combination with laboratory tests. 

Linear and non-linear elastic models considering 
joint deformations have also been developed. Foschi 
(1977) presented a model for nail-plate joints, able 
to capture the nail stiffness for different orientations 
in relation to the loading and wood fibre direction. It 
was also able to capture local plate buckling, and 
gap or contact respectively between wooden 
members. The key work by Foschi has been 
followed by further development, modifications and 
software development (e.g. Petersson and Olsson 
1994; Olsson and Rosenqvist 1996; Nielsen 1996; 
Berglund and Holmberg 2000; Ellegaard 2001). 

More advanced models, using 2D or 3D finite 
elements, plasticity theory and fracture mechanics, 
must be employed in order to capture the nail-plate 
joint behaviour in detail when loaded until failure. 
Some work in this area has also been carried out 
(e.g. Nielsen 1996 and Kevarinmäki 2000) but these 
models have only been employed on single joints 
and are primarily suitable for research on details in 
the mechanical behaviour of joints and for 
calibration of simplified joint models. 

Our purpose is to investigate the impact of gap 
between wooden members, and the influence of 
randomly misplaced nail-plates, on the deformations 
of roof trusses. This requires a large number of runs 
and it is therefore important that a single 
deterministic calculation can be carried out at a low 
computational cost. The Foschi type model fulfills 
our requirements and a simple version of it will be 
employed herein. The following presentation of the 
mechanical model is similar to the presentation and 
model by Nielsen (1996) although it differs in some 
details. 

2.2 A non-linear model for nail-plate joints 

A roof truss can be divided in nail-plate joints and 
wooden members between the joints. The wooden 
members between the joints are modelled herein by 
Timoshenko beam elements which are located in the 
system lines. The wooden members are assumed to 
behave linearly elastic. 

The joints are modelled by three different types of 
elements, namely; nail elements, splice elements and 
contact elements. A nail element represents the nails 
of a plate area fastened into one wooden member. 
The splice element represents the plate covering the 
border between two wooden members. It is 
connected, in the model, to two nail elements. The 
splice element captures the normal and shear 
deformations of the plate. The contact element is 

used to capture the contact pressure between wooden 
members. Gap between wooden members may be 
initially present due to tolerances and fabrication 
errors but contact may arise as a consequence of the 
roof truss deformation when loaded. It is required, of 
course, that an initial gap is closed in order to put the 
contact element into action. Finally, rigid 
connections are employed in the model too. These 
are used to couple other elements and transfer forces 
and moments due to the geometry of the joint and 
the model. Figure 1 shows an arbitrary nail-plate 
joint and the elements used in the modelling. Below 
follows the derivations of the element stiffness 
matrices of the joint elements. 

 

 
 
Figure 1: Nail-plate joint and corresponding mechanical model. 
Different element symbols are introduced. 

2.2.1 The nail element 
Each nail of the nail-plate area contribute to the 
stiffness of the corresponding nail element. The 
contribution of a nail to the rotational stiffness is 
dependent of the distance to the rotational centre. 
This is captured by the distance to the nodal points 
of the nail element, i.e. to the reference positions in 
the wooden and nail-plate parts respectively. An 
important assumption is that the plate area and the 
corresponding wooden area of the nail element 
transform and rotate rigidly, i.e. do not deform. 
Figure 2 shows the local coordinate system of a nail 
element along with the global coordinate system of 
the model. It also shows the nodal points of the nail 
element and the position of an arbitrary location i  in 
the nail-plate area. Thus, even though the nail 
element symbol introduced in Figure 1 indicates that 
both nodes of the element are located at the same 
position this is only one possible choice. The node 
positions may be chosen arbitrarily.  

The absolute displacement between the wood and 
the plate in point i  of the nail-plate area is calculated 
as  
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22= yx  (1) 

where x  and y  are the displacements in the x -
direction and in the y -direction respectively, 
calculated as  

)()( =;= nT
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nT

xx uquq  (2)   

where, with reference to Figure 2, 
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The displacement between two arbitrary points, in 
the plate and in the wood respectively, can thus be 
uniquely determined by the translations and rotations 
of the nodal points. 

The stiffness relation adopted in the model, Eq. 6, 
was suggested by Foschi (1977). 

0

0

10 1)(=)(
p

k
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The force, p , on a tooth in position i  is a function 
of the absolute displacement between the plate and 
the wood, , and three stiffness parameters. These 
parameters, 0p , 0k  and 1k , can be estimated by 
means of laboratory tests. The parameters may be 
functions of the angle between the grain direction of 
the wood and the principal axis of the plate, and of 
the direction of the force transmitted by the nail 
(Foschi 1977). In our simplified version of the 
model, however, and in accordance with Nielsen 
(1996), the stiffness parameters are assumed to be 
independent of directions. Figure 3 illustrates the 
force-displacement curve and shows the significance 
of 0p , 0k  and 1k  in the model. 

 
The secant and tangent stiffness matrices of the 

nail element, in the local coordinate system, can now 
be established. The reader may consult Nielsen 
(1996) for details in the derivation of the secant 
stiffness matrix using the principle of virtual work. 
Only the resulting expression is presented herein. 
The secant stiffness matrix, )(n

sK , can be expressed 
as 

dAqqqq
p T

yy

T

xx
A

n

s )(
)(

=)(
K  (7) 

where  is the nail density, i.e the number of 
nails per unit area, and A  is the nail-plate area 
represented by the nail element. 

 

 
 
Figure 2: Global and local coordinate systems of a nail element 
and delimitations of the corresponding nail-plate area. The 
degrees of freedom of the node of the plate are denoted pu[ , 

pv , ]pw  and the degrees of freedom of the node of the wood 
are denoted wu[ , wv , ]ww . 

 

 
 
Figure 3: Force-displacement relation for one nail of the plate 
area represented by the nail element, and definitions of the 
model stiffness parameters. 

 
As a typical nail element comprises a large number 
of nails it is practical to consider the nails and their 
stiffness contributions as smeared over the plate area 
and thus calculate the stiffness matrix of a nail 
element by numerical integration over the plate area 
of the element. The tangent stiffness matrix, )(n

tK , is 
finally expressed as  

dAqqqq
p T

yy
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2.2.2 The splice element 
The splice element is used to model the plate area 
close to the splice between two wooden members. 
The teeth are ineffective in this area because they are 
located between the wooden members or very close 
to the edges of the wooden members. As the teeth 
are cut out from the plate the remaining, perforated 
plate area, shaded in Figure 4, consists of a network 
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Figure 4: Geometry, degrees of freedom and coordinate systems of a splice element. The degrees of freedom of the nodal points are 

denoted au[ , av , ]aw  and bu[ , bv , ]bw  respectively, and the translations and rotations in some position along the splice are 

denoted 1[u , 1v , ]1w  and 2[u , 2v , ]2w  respectively. 

of approximately rectangularly formed small pieces. 
In the models presented by Foschi (1977) and 
Nielsen (1996) the plate area of the splice element 
was modelled by a number of beam elements 
representing the plate material between the holes. In 
the present model the stiffness of the splice element 
is captured by adopting a non-linear spring stiffness 
[ N / m ]2  in the x -direction and in the y -direction 
respectively along the splice, see Figure 4. This 
approach has an advantage as the stiffness is 
smeared over the length of the splice and is thereby 
continuous. The beam approach, on the other hand, 
represents the splice by a discrete number of small 
beams. This difference is important when it comes to 
probabilistic calculations and optimization of the 
structure later on.  

As the adjacent plate areas represented by the nail 
elements are assumed to be rigid, the displacement 
of each point, along the borders of the splice 
element, xxx  and 1= yy  or 2= yy , see 
Figure 4, is uniquely determined by the translations 
and rotations of the nodal points of the splice 
element. The locations of the nodal points, a  and b , 
are arbitrary. 

The kinematic relation between the nodal points 
and the positions along the edges of the splice area is 
expressed by 

)(= s
Duu  (9) 

where 

T
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In correspondence with the displacement vectors, 
)(s

u  and u , force vectors are defined by )(s
f  and 

fdx . The force components and moment 
components of )(s

f  correspond to the translation 
directions and rotations of )(s

u  and the components 
of f  correspond in the same way to the components 
of u . The vector )(s

f  is related to f  as  

dxT
x
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and the relation between f  and u  is expressed by 
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where 
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The parameters xk  and yk  are the spring stiffness 

of the splice element, in the x -direction and y -
direction respectively, per unit length along the 
splice. By inserting Eqs. 9 and 14 into Eq. 13 the 
local finite element equation is established by  

)()()( = sss
uKf  (16) 

where the stiffness matrix, )(s
K , is given by 

dxT
x

xx

s
DKDK

=

)( =  (17) 

The spring stiffness, xk  and yk , must finally be 
supplied to the model and a bilinear relation between 
stiffness and displacement is adopted herein, see 
Figure 5. As for the nail element, the secant stiffness 
matrix as well as the tangent stiffness matrix are 
derived, but as a general expression for the stiffness 
matrix is already given, Eq. 17, it only remains to 
supply values for xk  and yk  for the two alternative 
stiffness matrices. However, even though the values 
of the parameters in the x -direction and in the y -
direction may differ, the same procedure is 
employed for the derivation of xk  and yk . 
Therefore, only the derivation of xk  is presented 
below. ( yk  can be derived by replacing index x  by 
index y  in Eqs. 18-20). For the secant stiffness 
matrix the value assigned to xk  is 
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and for the tangent stiffness matrix the values 
assigned to xk  is 

c
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c

xx ckk <           ,=  
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c
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where x  is the displacement defined by 

)()(= 12 xuxux  (20) 

The parameters c

xk , 0

xk , t

xk , c

xc  and t

xc  are defined 
by Figure 5 and should be determined by means of 
laboratory tests.  

 
 
Figure 5: Bi-linear spring stiffness in the x-direction. 

c

xc  and 
t

xc  indicate critical displacements for which the tangent 
stiffness changes. The tangent stiffness for different 
displacements, x , is represented by 

c

xk , 
0

xk  and 
t

xk  
respectively. 

2.2.3 The contact element 
Contact pressure between wooden members arise in 
different locations of the roof truss when it is loaded, 
unless the initial gaps between the wooden members 
are too large. Contact elements should therefore be 
added to the model in locations where contact 
pressure may arise. Figure 6 shows the locations of 
two contact elements capturing the potential contact 
pressure between two wooden members. A contact 
element may be coupled to the beam elements of the 
wooden members by auxiliary beam elements or by 
geometrical transformations directly to the nodes of 
the beam elements representing the wooden 
members. The stiffness matrix of a contact element 
is derived below with respect to the degrees of 
freedom located where the contact takes place. 

The important parameters of a contact element 
are; the initial gap size between the wooden 
members, the normal stiffness of the contact element 
when put into action and the coefficient of friction 
between the wooden members.  

The element displacement vector is defined, with 
reference to Figure 6, as 

T

BBAA

c vuvu=)(
u  (21) 

The criterion for contact between the wooden 
members at the location of the element is 

gvv BA  (22) 
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where g  is the initial gap size. The element stiffness 
matrix of the contact element can, in the local 
coordinate system, be expressed as 
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where nk  is the normal stiffness perpendicular to the 
edges of the two wooden members and fk  is the 
shear stiffness caused by friction between the 
wooden members. fk  is a function of the normal 
force and the coefficient of friction. In the following 
derivations herein, however, friction is neglected 
giving 0=fk . 

 
 
Figure 6: Contact elements for modelling of contact pressure 
between wooden members. 

 
The element equation in local coordinates can be 

expressed as 

)()()( = ccc
uKf  (24) 

where the four components of the force vector, )(c
f , 

correspond to the four components of the 
displacement vector, )(c

u . 
The remaining task is to determine the value of 

the normal stiffness component, nk , of )(c
K . As 

before, the tangent as well as the secant stiffness 
matrices will be considered. The tangent and secant 
stiffness respectively, tk  and sk , are indicated in 
Figure 7. For the tangent stiffness matrix, nk  is 
given by 

gdkk tn <         0,==  (25) 

gd
L
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where d  is the current relative displacement, 

BA vv . E  is the modulus of elasticity of the wood 

material, which depends on the angles between the 
fibre directions of the wooden members and the 
contact surface. cA  is the estimated area of the 
contact surface between the members represented by 
the contact element, and L  is the length of the wood 
material in contact pressure modelled by the contact 
element. It may be noted that the estimated 
parameters E , cA  and L  are only employed in order 
to find a physical foundation for the estimation of 
the stiffness )( gdks . If )( gdks  can be 
estimated by laboratory experiments, E , cA  and L  
are not needed. 

The secant stiffness, sk , is a function of the 
tangent stiffness parameter, tk , and the initial gap 
size, g . For the secant stiffness matrix, nk  is defined 
by 

gdkk sn <                0,==  (26) 

gd
d

gdk
kk t

sn      ,
)(

==  

 
 
Figure 7: Contact force, nf , as function (solid line) of relative 
displacement and initial gap size. The tangent stiffness, tk , and 
the secant stiffness, sk , are illustrated. d  is the current 
relative displacement. 

2.3 Application on a roof truss 

The elements presented are now employed in the 
analysis of a complete roof truss using the software 
MATLAB (2002) and the finite element toolbox 
CALFEM (1999). The considered roof truss is a 
common symmetric W-truss with a roof angle of 

o20  and a span of approximately eight meters. The 
geometry of the truss and the nail-plate joints is 
shown in Figure 8, and the mechanical model of the 
joints, using the element symbols defined in Figure 
1, is presented in Figure 9. The same truss was 
analyzed by Nielsen (1996) and some material 
properties for the nail-plate joints are collected from 
his work. 
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Table 1 states the parameters of the truss 
elements. The first column contains the stiffness 
parameters of the wooden members. 0E  is the 
modulus of elasticity in the fibre direction and 90E  is 
the modulus of elasticity in direction perpendicular 
to the fibre direction. G  is the shear modulus. These 
wood parameters could be chosen differently 
depending on strength class, load duration and 
climate conditions for the structure. For our 
purposes, however, i.e. to calculate the influence of 
geometrical imperfection, it is sufficient to choose 
realistic stiffness values for the wooden members 
and not define under which precise conditions the 
chosen values are valid. Column two and column 
tree of Table 1 states the parameters of the nail 
elements and the splice elements respectively. The 
parameters originate to the plate type GNA20S 
produced by the company MiTek and the given 
values are valid for single nail-plates. As nail-plates 
are present on both sides of the wooden members of 

the truss, double nail elements and splice elements 
are assembled in the model. 

The normal, tangent stiffness of the contact 
elements in action depends on the estimated contact 
area, cA , the estimated length of the contact zone, 
L , and the modulus of elasticity of the wood in 
compression, E , which is highly dependent on the 
angle between the contact pressure and the wood 
fibre direction. The employed stiffness of each 
contact element, LEAk ct /= , is, with reference to the 
contact element numbering of Figure 9, supplied in 
the fourth column of Table 1. 

Two different load cases are considered in the 
present study. Load case A, shown in Figure 10, 
represents a realistic loading in relation to the design 
of the truss. Load case B is simply twice the loading 
of load case A. Load case B is hardly realistic for the 
truss under consideration, but it is useful for 
studying the effects of geometrical imperfections 
when the joints are heavily loaded.  

  

 

Figure 8: Geometry of a symmetric, 
o20 , W-truss including the nail-plate locations. Lengths are given in mm. 
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Table 1: Parameters of the truss elements. The first column contains the stiffness parameters of the wooden members. The second 
and third columns state the parameters of the nail elements and the splice elements respectively, and the fourth column states the 
normal stiffness of the contact elements. _________________________________________________________________________________________________________ 
Wooden members Nail element par.      Splice element par.     Contact stiffness _________________________________________________________________________________________________________ 

0E   MPa 7200  0p   N 150     
c

xk   
2mMN .443    (1)  tk   mMN5.14  

90E   MPa 240  0k   2mN 900    
0

xk   
2mMN 183    (2) tk   mMN5.29  

G   MPa 480  1k   mkN 80   
t

xk   
2mMN .443    (3a) tk   mMN295  

     2mteeth 14650  
c

yk   
2mMN 6.88    (3b) tk   mMN295  

            
0

yk   
2mMN 6304   (4a) tk   mMN254  

            
t

yk   
2mMN 6.88    (4b) tk   mMN254  

            
c

xc   m100.2 4
   (5)   tk   mMN1.15  

            
t

xc   m100.2   4
 

            
c

yc   m104.4 5
 

            
t

yc   m104.4   5
 

_________________________________________________________________________________________________________ 

 

 
 

Figure 9: Mechanical model of the nail-plate joints using nail elements, splice elements and contact elements. The numbering 
refers to the contact elements. 
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Figure 10: Definition of load case A. 

2.3.1 Results
 
The results presented herein are restricted to the 
deflection of the truss. The deflection supplies a 
measure of the overall stiffness of the truss, and 
requirements on the deflection are often critical for 
the design of roof trusses. 

The maximum deflection of the truss under 
consideration takes place in the middle of the chord. 
This is indicated in Figure 11, which shows the 
deformation mode of the entire truss for load case A. 
The relation between the deflection of the middle of 
the chord and the applied loading is shown in Figure 
12. The different curves represent cases with; initial 
contact between the wooden members, no contact 
between the wooden members, and rigid nail-plate 
connections. The stiffness curve representing the 
rigid connection model shows that a substantial part 
of the deflection depends on the limited stiffness of 
the wooden members, modelled by Timoshenko 
beams. Otherwise the deflection for this model 
would be smaller. However, even though the 
stiffness of the nail-plate joints is relatively high, the 
presence of contact between the wooden members 
makes a significant contribution to the overall 
stiffness compared to the case without any contact 
between the wooden members. Lack of contact also 
results in a more pronounced non-linear behaviour as 
larger deformations are reached in the nail-plate 
joints. 

Depending on the load level, the maximum 
deflection of the truss differs about 25%15  for 
models with initial contact compared to models 
without any contact between wooden members. For 
load case A, the deflection is 18.6 mm in case of 
initial contact and 21.3 mm in case of no contact. 
For load case B, the deflections are 38.9 mm and 
48.4 mm for initial contact and no contact 
respectively. In reality, initial gap may close as a 

result of deformations in the nail-plate joints 
subjected to loading. Large initial gap, however, may 
not close for any realistic loading on the roof truss 
and the magnitude of the initial gap is therefore of 
vital importance for the overall stiffness and 
deformation of the truss. 

 
Figure 11: Deformation mode of the W-truss, with initial 
contact between wooden members, subjected to load case A. 
The deformation is shown with a magnification factor of 
twenty. 

 

 
 
Figure 12: The relation between loading and deflection for cas-
es with initial contact between wooden members, and no con-
tact between wooden members, respectively. The stiffness 
curve of a roof truss model with rigid joints is also presented. 
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3 GEOMETRICAL IMPERFECTIONS 

3.1 Gap between wooden members 

The computational results presented above comprise 
the case of initial contact between all pairs of 
wooden members, and the case of no contact 
between any wooden members. Below follows a 
parameter study on gaps at different locations and a 
probabilistic analysis on the influence of randomly 
distributed gaps in a roof truss. 

3.1.1 Parameter study on the effect of gap 
For each pair of wooden members, for which contact 
as well as gap are possible and have influence on the 
behaviour of the truss, the effects of gap of different 
magnitudes are investigated. Table 2 and Table 3 
state, for load cases A and B respectively, the 
relative increase in deflection of the roof truss for 
gap of different magnitudes and at different 
locations. The numbering, 1-5, corresponds to the 
contact location numbering of Figure 9. For those 
joints modelled by more than one contact element 
(joint 3 and 4) the same initial gap size is assumed to 
be present throughout the splice. In each case of 
Tables 2-3, initial contact between wooden members 
is assumed at all other locations of the roof truss. 

The most important location, with respect to con-
tact vs gap, is joint 4, at the top of the roof truss. An 
initial gap here results in an increase in deflection of 
at most   for load case A, and   for load case B. For 
load case B, however, the initial gap must be almost 
4 mm wide in order to remain unclosed when the en-
tire load is applied, whereas for load case A, an ini-
tial gap of 1 mm remains unclosed. An initial gap of 
1 mm gives, for load case B, an increase in deflec-
tion of 3.5%. 

 
Table 2: For load case A, influence of gap of different 
magnitudes at different positions where contact matters. The 
values given are the ratio between the deflection of the truss 
with a certain gap, and the deflection of the truss with initial 
contact. 
__________________________________________________ 
Gap size  1   2   3(a–b) 4(a–b) 5 __________________________________________________ 
0.25 mm  1.003 0.999 1.012 1.019 1.015 
0.50 mm  1.006 0.999 1.013 1.036 1.025 
1.00 mm  1.006 0.999 1.013 1.055 1.025 
1.50 mm  1.006 0.999 1.013 1.055 1.025 _________________________________________________ 
 
Table 3: For load case B, influence of gap of different 
magnitudes at different positions where contact matters. The 
values given are the quota between the deflection of the truss 
with a certain gap, and the deflection of the truss with initial 
contact. __________________________________________________ 
Gap size  1   2   3(a–b) 4(a–b) 5 __________________________________________________ 
0.25 mm  1.002 0.999 1.007 1.010 1.007 
0.50 mm  1.003 0.999 1.012 1.018 1.015 

1.00 mm  1.007 0.999 1.020 1.035 1.028 
1.50 mm  1.008 0.999 1.020 1.054 1.028 
2.00 mm  1.008 0.999 1.020 1.073 1.028 
4.00 mm  1.008 0.999 1.020 1.106 1.028 __________________________________________________ 

 
Gap at joint 2 actually decreases, though not sig-

nificantly, the deflection of the chord. This result 
may surprise at a first glance, but the deflection of 
the middle of the chord does not capture the com-
plete behaviour of the truss. For example, gap at 
joint 2 also results in increased deflection of the raf-
ter for the same load cases. 

In contrast to gap at joint 2, gap at joint 5, at the 
opposite end of the short diagonal wooden member, 
has a significant and increasing effect on the deflec-
tion. It is actually the second most important contact 
location after the top joint. The reason for this is that 
gap/contact at joint 5 has direct impact on the inter-
nal forces and the deformations of the entire nail 
plate connecting the chord and the two diagonal 
members. Gap at joint 5 thus increases the internal 
forces and the deformations of the adjacent nail and 
splice elements, coupled to the chord and the longer 
diagonal. 

Joint 3, the splice joint of the rafter, is sensitive 
even to small gap. An initial gap of 0.25 mm in this 
single joint results in, for load case A, an increase of 
the deflection of 1.2%. 

Gap at joint 5, the heel joint, does not have a ma-
jor effect on the deflection. The reasons for this are 
that the contact element is relatively weak as it mod-
els wood in compression in the weak direction paral-
lel to the fibre direction, and that friction between 
wooden members is ignored. Also, the size of the 
nail plate at the heel joint is quite large, giving a stiff 
connection and only small relative displacements of 
the wooden members in the direction perpendicular 
to the contact surface. Therefore, the additional ef-
fect of contact between the chord and the rafter is 
moderate. 

For load case A, no initial gap of more than 1 mm 
closes during loading. Thus, the deflection for a case 
with gap above 1 mm coincides with a case where 
contact is ignored. For load case B larger gaps are 
closed during loading, but when the initial gap size 
is increased above a certain level this has no impact, 
according to the model, on the behaviour of the roof 
truss. The reason for this is that the employed model 
does not capture phenomena such as buckling of the 
nail plates, caused by large gap, as the stiffness of 
the splice elements are not sensitive to the gap size. 
Therefore, the present model, and consequently also 
the results, are not valid for very large gaps. How-
ever, in contrast to commercial software using very 
simple mechanical models, the employed model al-
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lows the required modifications at a reasonable addi-
tional effort. 

3.1.2 Probabilistic analysis on the influence of gap 
The presence of gaps in manufactured roof trusses is 
a consequence of lack of precision, and possibly lack 
of control, in the manufacturing process. Gaps are 
therefore randomly distributed and a roof truss may 
contain several gaps of different magnitudes at 
different joint locations. A proper analysis on the 
influence of gap must therefore involve probabilistic 
calculations, where the presence of gap is modelled 
by statistical distributions. These distributions 
should rely on thorough investigations on the actual 
gap magnitudes present in manufactured roof 
trusses. Unfortunately, however, no such 
investigation is available at this point. Instead we 
must make reasonable assumptions, and rely on 
these assumptions in the following calculations. 

Four different distributions of the initial gap sizes 
are considered. In each case a uniform distribution is 
assumed and the intervals are 0.25]:[0 , 0.5]:[0 , 

1.0]:[0  and 1.5]:[0  mm respectively. In total, nine 
pairs of wooden members are modelled by twelve 
contact elements, see Figure 9 (not showing joints 
represented by their reversed joints). No correlation 
or dependence is assumed between the gap sizes at 
different locations within the roof truss. 

The probabilistic analysis is performed using 
Monte Carlo simulations and the Latin hypercube 
sampling plan. The Latin hypercube sampling plan, 
first proposed by McKay et al. (1979), is more 
efficient than standard Monte Carlo sampling as it 
represents the distributions of the input data, in this 
case the gap magnitudes, accurately with a 
reasonable sample size. The method has been further 
developed for different purposes by several 
researchers [e.g Owen (1994); Olsson and Sandberg 
(2001)] and has been evaluated for structural 
mechanics applications by Olsson (1999). 

The results of the probabilistic analysis are shown 
in Figure 13 and Figure 14 for load cases A and B 
respectively. The histograms, comprising one 
thousand deterministic calculations each, show the 
distributions of the roof-truss deflection (the 
deflection of the middle of the chord) for the four 
different distributions of the gap magnitude. The 
deflections for the extreme cases, with initial contact 
and no contact between wooden members 
respectively, are marked by dashed lines in the 
histograms. The deflections for the cases with initial 
gap sizes equal to the upper limits of the 
distributions (0.25, 0.5, 1.0 and 1.5 mm respectively) 
are marked in the histograms by dotted lines. 

 

 
 
Figure 13: Histograms of the roof-truss deflection 
corresponding to load case A, and four different uniform 
distributions of the gap magnitude. 

 
It is clear from Figures 13-14 that even small 

initial gap, gap 0.25<  mm, significantly effect the 
deflection of the truss. For initial gap sizes equal to 
0.25 mm the deflection is increased by 7.5%  and 
4.0% , for load cases A and B respectively, 
compared to the truss with initial contact. It is 
interesting to note, that for load case A, small gap 
results in a larger relative increase of the deflection 
than for load case B. Gap larger than approximately 
1 mm, on the other hand, have larger impact on the 
deflection for load case B. 

The probabilistic results presented by the 
histograms give useful information on the 
probability for a certain deflection to be exceeded. 
However, without going into details about exact 
probabilities, it is clear that for each gap distribution 
and each load case, there is a significant risk that the 
deflection comes close to the upper bound of that 
particular case, i.e close to the dotted line in the 
histogram. For load case A, assuming the wide gap 
intervals of 1.0]:[0  and 1.5]:[0  mm, it seems even 
reasonable to neglect contact between wooden 
members when calculating the deflection. 
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Figure 14: Histograms of the roof-truss deflection correspond-
ing to load case B, and four different uniform distributions of 
the gap magnitude. 
 

It is finally concluded that a thorough 
investigation on the actual presence of gap in roof 
trusses would be most interesting in order to 
establish a valid statistical distribution of the gap 
magnitude. It would also be very interesting to study, 
by means of laboratory tests and advanced finite 
element calculations, the behaviour in bending and 
compression of nail plate joints when large gaps 
between wooden members are present. Such an 
investigation would probably imply a sensitivity to 
the gap size in the properties of the splice element. 

 
3.2 Location of nail-plates 

In contrast to models frequently employed in 
industry, the model employed herein captures the 
exact nail-plate location when calculating the 
deformations. Thus, we are able to investigate the 
effects of changes in the nail-plate locations. 
Displacements of nail-plates in relation to the 
prescribed locations may occur as a result of lack of 
precision in the manufacturing process and it is 
investigated how such random misplacement 
influences the behaviour of the roof truss. Another 
aspect considered is the possibility to improve the 
roof truss behaviour with respect to some critical 
criterion, in this case the deflection of the middle of 
the chord, by performing an optimization procedure 
on the nail-plate locations. 

Nail-plates are located on both sides of the 
wooden members and this is modelled, as before, by 
double nail and splice element stiffness. Thus, the 
plates on the opposite sides of the wooden members 
(with identical xy coordinates) are restricted, in the 
present model, to move in the same way. 

3.2.1 Probabilistic analysis on misplaced nail-
plates 
 

In similarity with the analysis on gap between 
wooden members, a probabilistic analysis on 
misplaced nail-plates is carried out. The probability 
distribution of the misplacement of the nail-plates 
should, preferably, be founded on a thorough 
investigation on actual nail-plate locations of 
manufactured roof trusses. As no such investigation 
is available the employed distribution of 
misplacement is instead founded on typical 
tolerances for nail-plate locations. A misplacement 
of at most 5 mm is often accepted and a uniform 
distribution in the interval 5]:5[  mm is therefore 
adopted herein for the misplacement in the length 
direction and cross direction respectively of each 
nail-plate. 

The probabilistic analysis is performed using 
Monte Carlo simulations and the Latin hypercube 
sampling plan. Cases with initial contact between 
wooden members as well as without any contact 
between wooden members are considered, and 
simulations are carried out for load cases A and B 
respectively. For each of the four combinations a 
probabilistic analysis consisting of one thousand 
deterministic calculations is carried out. The 
resulting deflections of the middle of the chord are 
visualized by the histograms in Figures 15-16. 

 
 
Figure 15: Histograms of the roof-truss deflection 
corresponding to load case A, and uniformly distributed 
displacements of nail-plates, 5]:5[  mm. Cases with initial 
contact and no contact between wooden members respectively 
are presented. 
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Figure 16: Histograms of the roof-truss deflection 
corresponding to load case B, and uniformly distributed 
displacements of nail-plates, 5]:5[  mm. Cases with initial 
contact and no contact between wooden members respectively 
are presented. 

 
The distributions of the roof truss deflection 

appears, in all the cases, to be approximately 
normally distributed with a moderate standard 
deviation. Of course, however, the intervals between 
the largest and smallest possible defections are 
limited as the nail-plate displacements are moderate 
and limited. It is also clear from Figures 15-16 that 
the influence of misplaced nail-plates is larger for 
roof trusses without contact between wooden 
members than for roof trusses with initial contact, 
and larger for load case B than for load case A. For 
load case B and no contact between wooden 
members the difference between the smallest and 
largest deflection is about 5% , or 2.5 mm deflection. 
For load case A and initial contact the difference is 
only about 2% , or 0.5 mm deflection. The reason 
for this is that for load case B the nail-plates are 
heavily loaded and have lower tangent stiffness. 
Small changes in positions, therefore, give large 
impact on the deformation. Also, in case of no 
contact between wooden members the nail-plates 
constitute the only load carriers between the wooden 
members, and the overall stiffness and deformation 
of the truss are more sensitive to changes of the nail-
plate positions than if contact is present. 

The deflection for the case with nominal positions 
of the nail-plates are marked in Figures 15-16 and it 
is obvious that the nominal nail-plate positions do 
not result in minimal deflection of the middle of the 
chord. For all four cases considered, a significant 
part of the random nail-plate configurations give 

lower deflections than the nominal configuration. 
This observation turns our interest towards an 
optimization of the nail-plate positions with respect 
to the deflection. 

3.2.2 Optimization of nail-plate positions 
It is fundamental for all optimization that a certain 
function of the involved variables is defined for 
evaluation. In the present case, the selected function 
is the deflection of the middle of the chord. The goal 
is to find the nail-plate configuration that minimizes 
this deflection. The displacements of the nail-plates 
in length direction and cross direction, see Figure 17, 
are thus the variables determining the deflection.  

 

 
 
Figure 17: Left part of the roof truss with definition and 
numbering of displacement directions of the nail-plates. 

 
Different constraints, i.e. restrictions on the 

optimization variables, may be applied in the search 
for the optimal solution. In the present case 
restrictions are placed on the displacements of the 
nail-plates. For example, the plate connecting the 
chord with the two diagonal wooden members is not 
allowed to be moved more than 5 mm in its length 
and cross direction respectively. The reason for this 
is that an extreme displacement of this nail-plate, 
towards loss of connection between the short 
diagonal and the other wooden members, would be 
favourable for the deflection under consideration, for 
the present load cases. It is easy to realize, however, 
that such a displacement would be far from optimal 
with respect to other demands on the roof truss and 
for other load cases. 

The analysis comprises the four cases considered 
in the investigation on misplaced nail-plates, i.e with 
and without contact between wooden members, and 
load cases A and B respectively. The resulting 
optimal nail-plate displacement, with reference to 
the variable numbering of Figure 17, are presented in 
Tables 4-5, for load cases A and B respectively, 
along with the corresponding deflections of the 
middle of the chord. Displacements restricted by 
constraints are marked by a (C) in Tables 4-5. 
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Table 4: Nail-plate displacements, in relation to the initial 
positions, giving minimum deflection of the chord of the roof 
truss for load case A. Activated constraints are indicated by 
(C). The resulting reductions of the deflection are also 
supplied. __________________________________________________ 
        Initial contact    No contact         ____________   ______________ 
Displacement    Load case A    Load case A __________________________________________________ 
1         1.9 mm       2.4 mm 
2        -3.9 mm      -0.5 mm 
3        -0.1 mm      -0.1 mm 
4         9.0 mm (C)     9.0 mm (C) 
5         5.0 mm (C)     5.0 mm (C) 
6         5.0 mm (C)     4.3 mm 
7         0.6 mm       1.0 mm 
8        -0.1 mm      -0.1 mm 
9         0.1 mm       0.1 mm 
10         9.0 mm (C)     9.0 mm (C) 
11         0.0 mm       0.0 mm 
12        -5.0 mm (C)     5.8 mm __________________________________________________ 
Reduction of 
deflection     1.6%       1.7% __________________________________________________    
 
Table 5: Nail-plate displacements, in relation to the initial 
positions, giving minimum deflection of the chord of the roof 
truss for load case B. Activated constraints are indicated by 
(C). The resulting reductions of the deflection are also 
supplied. __________________________________________________ 
        Initial contact    No contact         ____________   ______________ 
Displacement    Load case B    Load case B __________________________________________________ 
1         2.2 mm       3.2 mm 
2        -4.4 mm      -0.6 mm 
3        -0.1 mm      -0.2 mm 
4         9.0 mm (C)     9.0 mm (C) 
5         5.0 mm (C)     5.0 mm (C) 
6         5.0 mm (C)     3.4 mm 
7         0.3 mm       0.4 mm 
8        -0.1 mm      -0.1 mm 
9         0.1 mm       0.2 mm 
10         9.0 mm (C)     9.0 mm (C) 
11         0.0 mm       0.0 mm 
12        -5.0 mm (C)     7.3 mm __________________________________________________ 
Reduction of 
deflection     2.4%       3.8% __________________________________________________    

According to the calculations the optimum 
location for the nail-plate at the heel joint is fairly 
close to the nominal position. A moderate 
displacement to the right and downwards is, 
however, favourable for decreasing the deflection. 
This holds for all four cases considered, but the 
exact optimal displacement differs somewhat for the 
different cases. No constraints are activated at the 
heel joint. 

The nail-plates at the splice joints, connecting the 
wooden members of the chord and the rafter 
respectively, are moved towards the upper edges of 
the wooden members. For all cases considered the 
best location is such that the upper edge of the nail-
plates coincide with the upper edges of the wooden 

members. This is a reasonable result knowing that 
the maximum tension at the splice joint of the chord, 
as well as the maximum compression at the splice 
joint of the rafter, are located at the upper edges. It is 
assumed herein that the nails remain effective even 
if they are located close to the edges of the wood. It 
should also be noted that a different load case could 
give maximum tension at the lower edge of the 
splice joint of the chord, which would result in a 
nail-plate displacement towards the lower edge at 
this joint. 

The nail-plate connecting the chord with the two 
diagonal members of the roof truss is moved 
upwards and towards increased connection between 
the chord and the long diagonal member. The 
displacement of the nail-plate is limited by 
constraints allowing only 5 mm displacements in the 
length and cross directions of the plate. 

The optimal position of the nail-plate at the top 
joint depends on the presence of contact between the 
two rafters. In case of initial contact the plate is 
displaced downwards, increasing the connection 
between the long diagonal elements of the roof truss 
and the rafters. The two rafters are connected by 
contact pressure in combination with the nail-plate. 
On the other hand, in the cases of no contact 
between the wooden members the nail-plate is 
displaced upwards. In this case the nail-plate is 
moved towards a stiffer connection between the 
rafters. 

The results of the optimization procedure with 
respect to the target function, the deflection of the 
middle of the chord, are also presented in Table 5. 
The reduction of the deflection is 3.8%1.6 , 
compared to the deflection with nominal nail-plate 
positions, where the higher value is valid for load 
case B in case of no contact between wooden 
members. This reduction is modest, but significant. 
In the design of a roof truss there is often a critical 
deflection for one load case that may not be 
exceeded. If calculations, considering a preliminary 
design, show that the allowed deflection will be 
exceeded it may be a solution to perform 
optimization on the nail-plate positions aiming at 
decreased deflection. This is of course an attractive 
option compared to increasing the dimensions of 
wooden members and nail-plates.  

3.2.3 The optimization procedure  
Finally, a few comments on the optimization 
procedure should be supplied. A traditional 
optimization procedure using the steepest decent 
method is employed. In brevity, starting at the 
nominal nail-plate positions, the gradient of the 
target function, i.e. the deflection, is calculated with 
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respect to the nail-plate displacements. Then the 
quadratic fit method is employed. The target 
function is evaluated at two additional locations 
along the direction of the calculated gradient, giving 
that the deflection is known at three different 
locations, and that a quadratic polynomial can be 
fitted to these values. The polynomial in turn 
suggests a new position along the gradient direction 
for which the target function is minimized 
(according to the quadratic approximation). Then a 
new gradient is calculated at this new position and 
the procedure proceeds with a new quadratic fit and 
so on. The procedure is a common strategy in 
structural optimization and a textbook on the subject 
is written by Luenberger (1989). 

An important detail in the implementation of the 
present optimization problem is the calculations of 
gradients. The gradient is calculated numerically, 
and a general perturbation procedure, for calculating 
the gradient once, would require a complete 
calculation of the deflection for twenty-two different 
nail-plate configurations (as the truss has eleven 
nail-plates, each with two displacement degrees of 
freedom). However, as the non-linear model is 
elastic, i.e the response is path independent, the 
gradient can be calculated by only performing one 
additional increment, and not a complete solution, 
for each of the twenty-two nail-plate displacements. 
This feature is very important for the computational 
efficiency giving that the optimization procedure can 
be carried out at a very low computational cost, 
namely the cost of solving the problem for one nail-
plate configuration, times three (for the quadratic 
fit), times the number of iterations for convergence 
(about five or ten). The strategy for effective 
calculations of gradients in non-linear elastic 
problems is presented in detail by Liu and Der 
Kiureghian (1991). 

4 CONCLUDING REMARKS AND FURTHER 
RESEARCH 

An investigation on the influence of geometrical 
imperfections in roof trusses has been carried out 
using a non-linear model able to consider the 
stiffness of nail-plate joints including contact 
pressure between wooden members. 

Gap between wooden members, compared to 
initial contact between members, was found to be of 
great importance for the deflection and overall 
stiffness of the considered o20  W-truss. For 
moderate loading the deflection of the middle of the 
chord was about 15% larger for the case without 
contact, and the difference was even larger for higher 

loading. It was also found that small initial gaps 
between wooden members, less than 0.5 mm, 
distributed at different locations in the truss, result in 
a significant impact on the deflection. 

Further work on gap between wooden members 
should comprise a thorough investigation on actual 
gap sizes present in manufactured roof trusses. Also, 
laboratory tests on nail-plate joints in order to 
calibrate stiffness properties of nail-plates and 
contact pressure should be carried out. In particular, 
the friction coefficients for different wood fibre 
directions, and the influence of the butt effect should 
be evaluated and considered in the calculations. The 
butt effect is the effect that sawn surfaces of wood, 
pressed into each other in the fibre direction, tend to 
have a relatively low initial contact stiffness. 
Moreover, the splice elements of the mechanical 
model should be modified, according to laboratory 
tests, to be able to capture the effects of very large 
gaps between wooden members. Such gaps could be 
catastrophic for the behaviour of the truss. In 
addition, the dependence on the angle between the 
plate direction and the splice direction should be 
evaluated and considered for the stiffness parameters 
of the splice element. Finally, not only stiffness and 
deformations should be considered in the 
evaluations, but also the ultimate strength of roof 
trusses. 

Misplaced nail-plates may have negative effect on 
the stiffness and deflection of the roof truss. 
However, if the misplacement magnitudes are 
moderate, less than 5 mm, the influence on the 
deflection is much smaller than the influence of gap 
between wooden members. Controlled 
displacements of nail-plates, on the other hand, can 
be used in order to improve the behaviour of the roof 
truss. It was shown that the deflection can be 
reduced by about 4%2 , depending on the load 
case and the presence of contact. Moreover, it was 
shown that the employed non-linear and elastic 
mechanical model can, at a low computational cost, 
be combined with an optimization procedure adapted 
for the problem. 

One type of geometrical imperfection, not 
considered herein, is poorly pressed nail-plates. Such 
nail-plates have reduced stiffness and strength and 
the problem should be considered in a way similar to 
the types of geometrical imperfections treated 
herein, in combination with laboratory work. 

The conclusions from research on geometrical 
properties of wooden roof trusses with nail-plate 
joints can be used for development of more accurate 
and complete computer software than those 
employed in industry today. The suggested models 
and routines can be used not only to increase the 
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safety and performance of roof trusses, but also to 
improve the utilization of material, components and 
tolerances in industry. 
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