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1 INTRODUCTION 

Closed form solutions for element equilibrium and 
flexibility matrices of 4-node(MRP4) rectangular 
plate bending element are presented in this paper. 
The Mindlin-Reissner plate theory has been em-
ployed in the formulation as it accounts for the effect 
of shear deformation and the same model can be 
used for the analysis of both thin and moderately 
thick plate problems. The closed form solutions are 
more suitable for the analysis of thin/moderately 
thick plate problems with square / rectangular boun-
daries. Although the applications of square / rectan-
gular plate bending elements are limited in practice, 
generally closed form solutions of  equilibrium and 
flexibility matrices produce, in general,  more accu-
rate results in considerably less time compare to 
those obtained using numerical methods.  

Extensive research efforts are spent in modeling 
the behavior of the elements and later deriving the 
matrices which represent their characteristic beha-
vior in the finite element method of analysis.  The 
various matrices are formed with interpolation func-
tions for displacement and sometimes force distribu-
tion within or on the boundary of the element. Later 
on algebraic manipulations, including differentiation 
and integration, are performed on describing charac-

teristics of the element stiffness, flexibility and equi-
librium matrices.  As the number of degrees of free-
dom of the element increases, the algebraic manipu-
lations become huge and intractable. Therefore 
automatic generation and closed form of these ma-
trices have been attempted by several researchers 
like Luff, et al. [1], Gunderson, et al. [2], Cecchi et 
al. [3], Noor, et al [4], Hoa et al [5], Chang et al. [6], 
Yew et al.[7], Eriksson et al.[8], Nagabhushanam et 
al.[9].  Closed form of stiffness matrices for a four 
node quadrilateral element and commonly used hy-
brid finite elements are developed by Griffiths [10] 
and Lee et al, [11]. Rectangular finite element for-
mulation with its applications are given by Ozto-
run[12].      

Analogous to development of closed form solu-
tions or automatic generation of stiffness matrices in 
the displacement-based finite element method as 
cited above, the IFM is also in need of development 
of closed form solutions of element equilibrium and 
flexibility matrices, and compatibility conditions for 
analyzing civil, mechanical and aerospace engineer-
ing structures. In this direction, Nagabhushanam, et 
al, [13],   developed a general purpose program to 
generate compatibility matrix for the Integrated 
Force Method. Automatic generation of sparse and 
banded compatibility matrix using the Integrated 
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Force Method is presented by Nagabhushanam, et 
al,[14]. In this paper, IFM has been used to obtain 
closed form solutions for equilibrium and flexibility 
matrices of the Mindlin-Reissner theory based 4-
node rectangular plate bending element for the anal-
ysis of thin (t/L ≤ 0.01, where t= thickness of plate 
and L = span of plate) and moderately thick (0.01 < 
t/L ≤ 0.2) square/rectangular plate problems. 

The Integrated Force Method (IFM) is a new nov-
el matrix formulation developed by Patnaik[15] for 
the analysis of civil, mechanical and aerospace engi-
neering structures. In general equilibrium equations, 
compatibility conditions are to be satisfied in addi-
tion to the constitutive relations which describe the 
material behavior while analyzing the structural me-
chanics problems. In this method all internal forces 
of the structure are treated as unknown variables and 
computed by simultaneously imposing equilibrium 
equations and compatibility conditions. The IFM in-
tegrates the system equilibrium equations and the 
global compatibility   conditions in a fashion paral-
leling approaches in continuum   mechanics (exam-
ple, the Beltrami - Michel formulation of elasticity 
16].  IFM is based on variational principles [17] and 
its stationary condition of the functional yields the 
equilibrium equations, compatibility and natural 
boundary conditions.     

Unlike classical force method of analysis, the 
IFM is independent of redundants and the basic de-
terminate structure. The IFM provides a natural way 
of integrating the equilibrium equations and the 
compatibility conditions while performing structural 
analysis.  IFM requires explicit generation of compa-
tibility conditions for skeletal as well as continuum 
structures. The advantages of IFM compare to dis-
placement-based finite element method are reported 
in the reference [18]. In this paper, closed form solu-
tions for equilibrium and flexibility matrices of 4-
node rectangular plate bending element(MRP4) for  
analyzing the thin/moderately thick plate bending 
problems using IFM is presented.  The Mindlin-
Reissner theory has been employed in the plate 
bending formulation which accounts for the shear 
deformation. Three degrees of freedom namely a 
transverse displacement w and two rotations θx, θy  
are considered at each node of 4-node element.    
The shear correction factor as suggested by Reiss-
ner[19] has been considered  in the formulation. 
Displacement and stress-resultants fields are chosen 
over the element and the corresponding   element 
equilibrium and flexibility matrices are obtained in 
closed form using exact integration. To validate 
these closed form equilibrium and flexibility matric-
es of the element MRP4, standard square/rectangular 
plate bending benchmark problems are analyzed for 

central deflections and moments. The results ob-
tained by the closed form solutions are compared 
with those obtained using displacement -based four 
node quadrilateral elements available in the literature 
[20]. Results are also compared with the exact solu-
tions. The closed form solutions presented in this 
paper produce excellent results for both thin and 
moderately    thick plate bending problems with 
square / rectangular boundaries.     

2 FORMULATION OF ELEMENT 
EQUILIBRIUM AND FLEXIBILITY 
MATRICES 

Formulation of equilibrium and flexibility matrices 
for Mindlin - Reissner theory based plate bending 
elements is explained:  In the   Mindlin - Reissner 
theory where a line that is straight and normal to 
mid-surface of the un-deformed plate remain straight 
but not necessarily normal to the mid-surface of the 
deformed plate. This leads to the following defini-
tion of the displacement components u, v, w in the 
x,y,z  Cartesian coordinates system. 

),( yxzu xθ−= ; 

),( yxzv yθ−= ; 

),( yxww =     (1) 

where               
       x, y      are coordinates in the reference mid-
surface      
        z        is the coordinate through the thickness t               
                  with -t/2 ≤ z ≤ t/2       
         w   is the transverse (lateral) displacement      
     θx, θy    represent the rotations of the  normal in   
x-z  and  y-z  planes respectively. 
                             
Engineering strains for the Mindlin-Reissner theory 
can be written as 

{ } { }1kz−=ε  (2) 

where 

{ } T

zxyzxyyx ][ γγγεεε = ; 

{ }

T

xy
yxyx

z

x

w

z

y

w

xyyx
k



















∂

∂
−

∂

∂
−

∂

∂
+

∂

∂

∂

∂

∂

∂
=

θθ
θθθθ

1  



 

 Electronic Journal of Structural Engineering (10) 2010   

3 
 

The stress - strain relations for an isotropic two-
dimensional plate material is given by 

{ } [ ]{ }εσ conC=  (3) 

where  { } [ ]T
xzyzxyyx τττσσσ =   

                    = Vector of stress components 

        { } [ ]Txzyzxyyx γγγεεε =  

                    = Vector of strain components  

[Ccon] = constitutive matrix  
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 E  = Young’s modulus;    ν  = Poisson’s ratio 

The stress-resultants  { }M   can be expressed as 

{ } [ ] dzzzzM
Tt

t
zxyzxyyx∫−=

2/

2/
τττσσ        (4)                                                          

 where    { } [ ]T
xyxyyx QQMMMM =  

                       = Vector of stress - resultants 
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Equations 2, 3 and  4 yield the moment-curvature re-
lations as 

{ } [ ]{ }kCM 1=                                   (5)                              

where    { }k  = Vector of Curvatures  
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[ ] =1C  matrix relating stress resultants to curvatures 

From the equation (5), the curvature moment rela-
tion becomes  

{ } [ ] { } [ ]{ }MHMCk ==
−1

1              (6)                

where      [ ]H  = [ ] 1

1

−
C    is the matrix relating  curva-

tures to stress-resultants and  it can be written with 

Reissner's shear correction factor of 5/6 as: 
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where  12/3

1 EtD = ;  

  t  = thickness of the plate;      

              

The Strain energy pU of the plate in bending is given 
by  

{ } { }dxdyMkU
T

p ∫∫= 2/1                    (8)  

For a discrete plate bending element the {M} and 
{k} can be expressed in terms of assumed stress-
resultant and displacement fields respectively in the 
matrix form as 

{ } [ ]{ }eFM ψ=    (9) 

{ } [ ][ ]{ } [ ]{ }{ }eopop XDDk φαφ == 1         (10) 

where                    

[ ]ψ  = matrix of polynomial terms for   stress-  

          resultant fields      

{ }eF  = vector of force components of the discrete  

           element      

[ ]1φ  = matrix of polynomial terms for displacement 

fields      

[ ] [ ][ ] 1

1

−
= Aφφ  

[ ]A  = matrix formed by substituting the coordinates 

of the element nodes into the polynomial of dis-

placement fields      

{ }α  =    coefficients of the displacement field  

             polynomial     
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Figure 3: Central moment for a simply supported square thin (t/L=0.01) plate with uniform load 

 
Figure 4: Central deflection for a clamped square thin (t/L=0.01) plate with uniform load 
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Figure 5: Central moment for a clamped square thin (t/L=0.01) plate with uniform load 

 

 
Figure 6:  Central deflection for a simply supported square thick (t/L=0.2) plate with uniform load 

 
 

 
 
Figure 7:  Central moment for a simply supported square thick (t/L=0.2) plate with uniform load 
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Figure 8: Central deflection for a clamped square thick plate (t/L=0.2) with uniform load 

  
 

4    CONCLUSIONS  

Closed form solutions for equilibrium and flexibility 
matrices of Mindlin-Reissner theory based 4-node 
rectangular plate bending element MRP4 are pre-
sented. These matrices are validated by analyzing 
standard plate bending benchmark problems to ob-
tain central deflections and moments. The results are 
compared with those obtained from displacement-
based 4-node similar elements. The results are also 
compared with the exact solutions. The results ob-
tained using these closed form solutions are conti-
nuously converging towards exact solutions for vari-
ous mesh sizes in both thin and thick plate bending 
situations. Therefore these closed form solutions can 
be used to analyze both thin and moderately thick 
plate bending problems with square / rectangular 
boundaries.   
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