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ABSTRACT
This paper addresses the effects of shrinkage on the serviceability of concrete structures.  It outlines why
shrinkage is important, its major influence on the final extent of cracking and the magnitude of deflection in
structures, and what to do about it in design.  A model is presented for predicting the shrinkage strain in normal
and high strength concrete and the time-dependent behaviour of plain concrete and reinforced concrete, with
and without external restraints, is explained.  Analytical procedures are described for estimating the final width
and spacing of both flexural cracks and direct tension cracks and a simplified procedure is presented for
including the effects of shrinkage when calculating long-term deflection.  The paper also contains an overview
of the considerations currently being made by the working group established by Standards Australia to revise
the serviceability provisions of AS3600-1994, particularly those clauses related to shrinkage.
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1. Introduction
For a concrete structure to be serviceable, cracking must be controlled and deflections must not be
excessive. It must also not vibrate excessively. Concrete shrinkage plays a major role in each of these
aspects of the service load behaviour of concrete structures.

The design for serviceability is possibility the most difficult and least well understood aspect of the
design of concrete structures. Service load behaviour depends primarily on the properties of the
concrete and these are often not known reliably at the design stage. Moreover, concrete behaves in a
non-linear and inelastic manner at service loads. The non-linear behaviour that complicates
serviceability calculations is due to cracking, tension stiffening, creep, and shrinkage. Of these,
shrinkage is the most problematic. Restraint to shrinkage causes time-dependent cracking and
gradually reduces the beneficial effects of tension stiffening. It results in a gradual widening of
existing cracks and, in flexural members, a significant increase in deflections with time.

The control of cracking in a reinforced or prestressed concrete structure is usually achieved by
limiting the stress increment in the bonded reinforcement to some appropriately low value and
ensuring that the bonded reinforcement is suitably distributed. Many codes of practice specify
maximum steel stress increments after cracking and maximum spacing requirements for the bonded
reinforcement. However, few existing code procedures, if any, account adequately for the gradual
increase in existing crack widths with time, due primarily to shrinkage, or the time-dependent
development of new cracks resulting from tensile stresses caused by restraint to shrinkage.

For deflection control, the structural designer should select maximum deflection limits that are
appropriate to the structure and its intended use. The calculated deflection (or camber) must not

eeJJSSEE
International

mailto:i.gilbert@unsw.edu.au


Electronic Journal of Structural Engineering, 1 ( 2001) 16

exceed these limits. Codes of practice give general guidance for both the selection of the maximum
deflection limits and the calculation of deflection. However, the simplified procedures for calculating
deflection in most codes were developed from tests on simply-supported reinforced concrete beams
and often produce grossly inaccurate predictions when applied to more complex structures. Again,
the existing code procedures do not provide real guidance on how to adequately model the time-
dependent effects of creep and shrinkage in deflection calculations.

Serviceability failures of concrete structures involving excessive cracking and/or excessive deflection
are relatively common. Numerous cases have been reported, in Australia and elsewhere, of structures
that complied with code requirements but still deflected or cracked excessively. In a large majority of
these failures, shrinkage of concrete is primarily responsible.  Clearly, the serviceability provisions
embodied in our codes do not adequately model the in-service behaviour of structures and, in
particular, fail to account adequately for shrinkage.

The quest for serviceable concrete structures must involve the development of more reliable design
procedures. It must also involve designers giving more attention to the specification of an appropriate
concrete mix, particularly with regard to the creep and shrinkage characteristics of the mix, and sound
engineering input is required in the construction procedures. High performance concrete structures
require the specification of high performance concrete (not necessarily high strength concrete, but
concrete with relatively low shrinkage, not prone to plastic shrinkage cracking) and a high standard of
construction, involving suitably long stripping times, adequate propping, effective curing procedures
and rigorous on-site supervision.

This paper addresses some of these problems, particularly those related to designing for the effects of
shrinkage. It outlines how shrinkage affects the in-service behaviour of structures and what to do
about it in design. It also provides an overview of the considerations currently being made by the
working group established by Standards Australia to revise the serviceability provisions of AS3600-
1994 [1], particularly those clauses related to shrinkage.

2. Designing for Serviceability
When designing for serviceability, the designer must ensure that the structure can perform its
intended function under the day to day service loads.  Deflection must not be excessive, cracks must
be adequately controlled and no portion of the structure should suffer excessive vibration. Shrinkage
causes time-dependent cracking, thereby reducing the stiffness of a concrete structure, and is
therefore a detrimental factor in all aspects of the design for serviceability.

Deflection problems that may affect the serviceability of concrete structures can be classified into
three main types:
(a) Where excessive deflection causes either aesthetic or functional problems.
(b) Where excessive deflection results in damage to either structural or non-structural element

attached to the member.
(c) Where dynamics effects due to insufficient stiffness cause discomfort to occupants.

Examples of deflection problems of type (a) include objectionable visual sagging (or hogging), and
ponding of water on roofs. In fact, any deflection that prevents a member fulfilling its intended
function causes a problem of this type. Type (a) problems are generally overcome by limiting the
total deflection to some appropriately low value. The total deflection is the sum of the short-term and
time-dependent deflection caused by the dead load (including self-weight), the prestress (if any), the
expected in-service live load, and the load-independent effects of shrinkage and temperature changes.
When the total deflection exceeds about span/200 below the horizontal, it may become visually
unacceptable. The designer must decide on the maximum limiting value for the total deflection and
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this limit must be appropriate for the particular member and its intended function. A total deflection
limit of span/200, for example, may be appropriate for the floor of a carpark, but is inadequate for a
gymnasium floor which may be required to remain essentially plane under service conditions.

Examples of type (b) problems include deflections resulting in cracking of masonry walls or other
partitions, damage to ceiling or floor finishes, and improper functioning of sliding windows and
doors. To avoid these problems, a limit must be placed on that part of the total deflection that occurs
after the attachment of such elements. This incremental deflection is usually the sum of the long-term
deflection due to all the sustained loads and shrinkage, the short-term deflection due to the transitory
live load, and any temperature-induced deflection. AS 3600 (1994) [1] limits the incremental
deflection for members supporting masonry partitions to between span/500 and span/1000, depending
on the provisions made to minimise the effect of movement.

Type (c) deflection problems include the perceptible springy vertical motion of floor systems and
other vibration-related problems. Very little quantitative information for controlling vibration is
available in codes of practice. ACI 318-99 [2] places a limit of span/360 on the short-term deflection
of a floor due to live load. This limit provides a minimum requirement on the stiffness of members
that may, in some cases, be sufficient to avoid problems of type (c).

Excessively wide cracks can be unsightly and spoil the appearance of an exposed concrete surface;
they can allow the ingress of moisture accelerating corrosion of the reinforcement and durability
failure; and, in exceptional cases, they can reduce the contribution of the concrete to the shear
strength of a member. Excessively wide cracks in floor systems and walls may often be avoided by
the inclusion of strategically placed contraction joints, thereby removing some of the restraint to
shrinkage and reducing the internal tension. When cracking does occur, in order to ensure that crack
widths remain acceptably small, adequate quantities of well distributed and well-anchored
reinforcement must be included at every location where significant tension will exist.

The maximum crack width that may be considered to be acceptable in a given situation, depends on
the type of structure, the environment and the consequences of excessive cracking. In corrosive and
aggressive environments, crack widths should not exceed 0.1 - 0.2 mm. For members with one or
more exposed surfaces, a maximum crack width of 0.3 mm should provide visual acceptability. For
the sheltered interior of most buildings where the concrete is not exposed and aesthetic requirements
are of secondary importance, larger crack widths may be acceptable (say 0.5 mm or larger).

3. Effects of Shrinkage
If concrete members were free to shrink, without restraint, shrinkage of concrete would not be a
major concern to structural engineers. However, this is not the case. The contraction of a concrete
member is often restrained by its supports or by the adjacent structure. Bonded reinforcement also
restrains shrinkage. Each of these forms of restraint involve the imposition of a gradually increasing
tensile force on the concrete which may lead to time-dependent cracking (in previously uncracked
regions), increases in deflection and a widening of existing cracks. Restraint to shrinkage is probably
the most common cause of unsightly cracking in concrete structures. In many cases, these problems
arise because shrinkage has not been adequately considered by the structural designer and the effects
of shrinkage are not adequately modelled in the design procedures specified in codes of practice for
crack control and deflection calculation.

The advent of shrinkage cracking depends on the degree of restraint to shrinkage, the extensibility
and strength of the concrete in tension, tensile creep and the load induced tension existing in the
member. Cracking can only be avoided if the gradually increasing tensile stress induced by shrinkage,
and reduced by creep, is at all times less than the tensile strength of the concrete. Although the tensile
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strength of concrete increases with time, so too does the elastic modulus and, therefore, so too does
the tensile stress induced by shrinkage. Furthermore, the relief offered by creep decreases with age.
The existence of load induced tension in uncracked regions accelerates the formation of time-
dependent cracking. In many cases, therefore, shrinkage cracking is inevitable. The control of such
cracking requires two important steps. First, the shrinkage-induced tension and the regions where
shrinkage cracks are likely to develop must be recognised by the structural designer. Second, an
adequate quantity and distribution of anchored reinforcement must be included in these regions to
ensure that the cracks remain fine and the structure remains serviceable.

3.1  What is Shrinkage?
Shrinkage of concrete is the time-dependent strain measured in an unloaded and unrestrained
specimen at constant temperature. It is important from the outset to distinguish between plastic
shrinkage, chemical shrinkage and drying shrinkage. Some high strength concretes are prone to
plastic shrinkage, which occurs in the wet concrete, and may result in significant cracking during the
setting process. This cracking occurs due to capillary tension in the pore water. Since the bond
between the plastic concrete and the reinforcement has not yet developed, the steel is ineffective in
controlling such cracks. This problem may be severe in the case of low water content, silica fume
concrete and the use of such concrete in elements such as slabs with large exposed surfaces is not
recommended.

Drying shrinkage is the reduction in volume caused principally by the loss of water during the drying
process. Chemical (or endogenous) shrinkage results from various chemical reactions within the
cement paste and includes hydration shrinkage, which is related to the degree of hydration of the
binder in a sealed specimen.  Concrete shrinkage strain, which is usually considered to be the sum of
the drying and chemical shrinkage components, continues to increase with time at a decreasing rate.
Shrinkage is assumed to approach a final value, *

scε , as time approaches infinity and is dependent on
all the factors which affect the drying of concrete, including the relative humidity and temperature,
the mix characteristics (in particular, the type and quantity of the binder, the water content and water-
to-cement ratio, the ratio of fine to coarse aggregate, and the type of aggregate), and the size and
shape of the member.

Drying shrinkage in high strength concrete is smaller than in normal strength concrete due to the
smaller quantities of free water after hydration. However, endogenous shrinkage is significantly
higher.

For normal strength concrete ( 50≤′cf MPa), AS3600 suggests that the design shrinkage (which
includes both drying and endogenous shrinkage) at any time after the commencement of drying may
be estimated from

bcscs k .1εε = (1)

where bcs.ε  is a basic shrinkage strain which, in the absence of measurements, may be taken to be
850 x 10-6 (note that this value was increased from 700 x 10-6 in the recent Amendment 2 of the
Standard); k1 is obtained by interpolation from Figure 6.1.7.2 in the Standard and depends on the time
since the commencement of drying, the environment and the concrete surface area to volume ratio. A
hypothetical thickness, th = 2A/ ue, is used to take this into account, where A is the cross-sectional area
of the member and ue is that portion of the section perimeter exposed to the atmosphere plus half the
total perimeter of any voids contained within the section.

AS3600 states that the actual shrinkage strain may be within a range of plus or minus 40% of the
value predicted (increased from ± 30% in Amendment 2 to AS3600-1994).  In the writer’s opinion,
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this range is still optimistically narrow, particularly when one considers the size of the country and
the wide variation in shrinkage measured in concretes from the various geographical locations.
Equation 1 does not include any of the effects related to the composition and quality of the concrete.
The same value of εcs  is predicted irrespective of the concrete strength, the water-cement ratio, the
aggregate type and quantity, the type of admixtures, etc. In addition, the factor k1 tends to
overestimate the effect of member size and significantly underestimate the rate of shrinkage
development at early ages.

The method should be used only as a guide for concrete with a low water-cement ratio (<0.4) and
with a well graded, good quality aggregate. Where a higher water-cement ratio is expected or when
doubts exist concerning the type of aggregate to be used, the value of εcs predicted by AS3600 should
be increased by at least 50%. The method in the Standard for the prediction of shrinkage strain is
currently under revision and it is quite likely that significant changes will be proposed with the
inclusion of high strength concretes.

A proposal currently being considered by Standards Australia, and proposed by Gilbert (1998) [9],
involves the total shrinkage strain, εcs, being divided into two components, endogenous shrinkage,
εcse, (which is assumed to develop relatively rapidly and increases with concrete strength) and drying
shrinkage, εcsd (which develops more slowly, but decreases with concrete strength). At any time t (in
days) after pouring, the endogenous shrinkage is given by

εcse = ε*
cse (1.0 - e-0.1t) (2)

where ε*
cse is the final endogenous shrinkage and may be taken as  ε*

cse 610)503( −×−′= cf , where

cf ′  is in MPa. The basic drying shrinkage *
csdε  is given by

66* 1025010)81100( −− ×≥×′−= ccsd fε (3)
and at any time t (in days) after the commencement of drying, the drying shrinkage may be taken as

*
1 csdcsd k εε = (4)

The variable 1k  is given by
)7/(8.0

8.0
54

1
htt

tkkk
+

= (5)

where htek 005.0
4 2.18.0 −+=  and 5k  is equal to 0.7 for an arid environment, 0.6 for a temperate

environment and 0.5 for a tropical/coastal environment. For an interior environment, k5 may be taken
as 0.65. The value of k1 given by Equation 5 has the same general shape as that given in Figure
6.1.7.2 in AS3600, except that shrinkage develops more rapidly at early ages and the reduction in
drying shrinkage with increasing values of  th is not as great.

The final shrinkage at any time is therefore the sum of the endogenous shrinkage (Equation 2) and the
drying shrinkage (Equation 4). For example, for specimens in an interior environment with
hypothetical thicknesses th = 100 mm and th = 400 mm, the shrinkage strains predicted by the above
model are given in Table 1.
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Table 1   Design shrinkage strains predicted by proposed model for an interior environment.

Strain at 28 days
(x 10-6)

Strain at 10000 days
(x 10-6)

ht cf ′ *
cseε

(x 10-6)

*
csdε

(x 10-6)
cseε csdε csε cseε csdε csε

25 25 900 23 449 472 25 885 910
50 100 700 94 349 443 100 690 790
75 175 500 164 249 413 175 493 668

100

100 250 300 235 150 385 250 296 546
25 25 900 23 114 137 25 543 568
50 100 700 94 88 182 100 422 522
75 175 500 164 63 227 175 303 478

400

100 250 300 235 38 273 250 182 432

3.2  Shrinkage in Unrestrained and Unreinforced Concrete (Gilbert, 1988) [7]
Drying shrinkage is greatest at the surfaces exposed to drying and decreases towards the interior of a
concrete member. In Fig.1a, the shrinkage strains through the thickness of a plain concrete slab,
drying on both the top and bottom surfaces, are shown. The slab is unloaded and unrestrained.

The mean shrinkage strain, εcs in Fig. 1, is the average contraction. The non-linear strain labelled ∆εcs
is that portion of the shrinkage strain that causes internal stresses to develop. These self-equilibrating
stresses (called eigenstresses) produce the elastic and creep strains required to restore compatibility
(ie. to ensure that plane sections remain plane). These stresses occur in all concrete structures and are
tensile near the drying surfaces and compressive in the interior of the member. Because the
shrinkage-induced stresses develop gradually with time, they are relieved by creep. Nevertheless, the
tensile stresses near the drying surfaces often overcome the tensile strength of the immature concrete
and result in surface cracking, soon after the commencement of drying. Moist curing delays the
commencement of drying and may provide the concrete time to develop sufficient tensile strength to
avoid unsightly surface cracking.

Fig. 1 - Strain components caused by shrinkage in a plain concrete slab.

The elastic plus creep strains caused by the eigenstresses are equal and opposite to ∆εcs and are
shown in Fig. 1b. The total strain distribution, obtained by summing the elastic, creep and shrinkage
strain components, is linear (Fig. 1c) thus satisfying compatibility. If the drying conditions are the
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same at both the top and bottom surfaces, the total strain is uniform over the depth of the slab and
equal to the mean shrinkage strain, εcs . It is this quantity that is usually of significance in the analysis
of concrete structures. If drying occurs at a different rate from the top and bottom surfaces, the total
strain distribution becomes inclined and a warping of the member results.

3.3  Shrinkage in an unrestrained reinforced concrete member (Gilbert, 1986)
In concrete structures, unrestrained contraction and unrestrained warping are unusual. Reinforcement
embedded in the concrete provides restraint to shrinkage. As the concrete shrinks, the reinforcement
is compressed and imposes an equal and opposite tensile force on the concrete at the level of the
reinforcement. If the reinforcement is not symmetrically placed on a section, a shrinkage-induced
curvature develops with time. Shrinkage in an unsymmetrically reinforced concrete beam or slab can
produce deflections of significant magnitude, even if the beam is unloaded.

Consider the unrestrained, singly reinforced, simply-supported concrete beam shown in Figure 2a and
the small beam segment of length ∆x. The shrinkage induced stresses and strains on an uncracked and
on a cracked cross-section are shown in Figures 2b and 2c, respectively.

Fig. 2 - Shrinkage warping in a singly reinforced beam.

As the concrete shrinks, the bonded reinforcement imposes a tensile restraining force, ∆T, on the
concrete at the level of the steel. This gradually increasing tensile force, acting at some eccentricity to
the centroid of the concrete cross-section, produces curvature (elastic plus creep) and a gradual
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warping of the beam. It also may cause cracking on an uncracked section or an increase in the width
of existing cracks in a cracked member. For a particular shrinkage strain, the magnitude of ∆T
depends on the quantity of reinforcement and on whether or not the cross-section has cracked.

Shrinkage strain is independent of stress, but shrinkage warping is not independent of the load and is
significantly greater in a cracked beam than in an uncracked beam, as indicated in Fig. 2. The ability
of the concrete section to carry tensile stress depends on whether or not the section has cracked, ie.
on the magnitude of the applied moment, among other things. ∆T is much larger on the uncracked
section of Fig. 2b than on the cracked section of Fig. 2c. Existing design procedures for the
calculation of long-term deflection fail to adequately model the additional cracking that occurs with
time due to ∆T and the gradual breakdown of tension stiffening with time (also due to ∆T), and
consequently often greatly underestimate final deformations.

Compressive reinforcement reduces shrinkage curvature. By providing restraint at the top of the
section, in addition to the restraint at the bottom, the eccentricity of the resultant tension in the
concrete is reduced and, consequently, so is the shrinkage curvature. An uncracked, symmetrically
reinforced section will suffer no shrinkage curvature. Shrinkage will however induce a uniform
tensile stress which when added to the tension caused by external loading may cause time-dependent
cracking.

3.4  Shrinkage in a restrained reinforced concrete member (Gilbert, 1992) [8]
Structural interest in shrinkage goes beyond its tendency to increase deflections due to shrinkage
warping. External restraint to shrinkage is often provided by the supports of a structural member and
by the adjacent structure. When flexural members are also restrained at the supports, shrinkage
causes a build-up of axial tension in the member, in addition to the bending caused by the external
loads. Shrinkage is usually accommodated in flexural members by an increase in the widths of the
numerous flexural cracks. However, for members not subjected to significant bending and where
restraint is provided to the longitudinal movements caused by shrinkage and temperature changes,
cracks tend to propagate over the full depth of the cross-section. Excessively wide cracks are not
uncommon. Such cracks are often called direct tension cracks, since they are caused by direct tension
rather than by flexural tension. In fully restrained direct tension members, relatively large amounts of
reinforcement are required to control the load independent cracking.

Consider the fully-restrained member shown in Fig. 3a. As the concrete shrinks, the restraining force
N(t) gradually increases until the first crack occurs when N(t) = Ac ft, usually within two weeks from
the commencement of drying, where Ac is the cross-sectional area of the member and ft is the tensile
strength of the concrete. Immediately after first cracking, the restraining force reduces to Ncr, and the
concrete stress away from the crack is less than the tensile strength of the concrete. The concrete on
either side of the crack shortens elastically and the crack opens to a width w, as shown in Fig. 3b. At
the crack, the steel carries the entire force Ncr and the stress in the concrete is obviously zero. In the
region immediately adjacent to the crack, the concrete and steel stresses vary considerably and there
exists a region of partial bond breakdown. At some distance so on each side of the crack, the concrete
and steel stresses are no longer influenced directly by the presence of the crack, as shown in Figs 3c
and 3d.

In Region 1, where the distance from the crack is greater than or equal to so, the concrete and steel
stresses are σc1 and σs1, respectively. Since the steel stress (and hence strain) at the crack is tensile
and the overall elongation of the steel is zero (full restraint), σs1 must be compressive. Equilibrium
requires that the sum of the forces carried by the concrete and the steel on any cross-section is equal
to the restraining force. Therefore, with the force in the steel in Region 1 being compressive, the
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force carried by the concrete (Ac σc1) must be tensile and somewhat greater than the restraining force
(Ncr). In Region 2, where the distance from the crack is less than so, the concrete stress varies from
zero at the crack to σc1 at so from the crack. The steel stress varies from σs2 (tensile) at the crack to σs1

(compressive) at so from the crack, as shown.

Fig. 3 - First cracking in a restrained direct tension member.

To determine the crack width w and the concrete and steel stresses in Fig. 3, the distance so over
which the concrete and steel stresses vary, needs to be known and the restraining force Ncr needs to
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be calculated. An approximation for so maybe obtained using the following equation, which was
proposed by Favre et al. (1983) [6] for a member containing deformed bars or welded wire mesh:

so = db / 10 ρ (6)
where db is the bar diameter, and ρ is the reinforcement ratio As / Ac. Base and Murray (1982) used a
similar expression.
Gilbert (1992) showed that the concrete and steel stresses immediately after first cracking are
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where C1 = 2 so /(3L - 2 so). If n is the modular ratio, Es / Ec, the restraining force immediately after
first cracking is
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With the stresses and deformations determined immediately after first cracking, the subsequent long-
term behaviour as shrinkage continues must next be determined. After first cracking, the concrete is
no longer fully restrained since the crack width can increase with time as shrinkage continues. A state
of partial restraint therefore exists after first cracking. Subsequent shrinkage will cause further
gradual increases in the restraining force N(t) and in the concrete stress away from the crack, and a
second crack may develop. Additional cracks may occur as the shrinkage strain continues to increase
with time. However, as each new crack forms, the member becomes less stiff and the amount of
shrinkage required to produce each new crack increases. The process continues until the crack pattern
is established, usually in the first few months after the commencement of drying. The concrete stress
history in an uncracked region is shown diagrammatically in Fig. 4. The final average crack spacing,
s, and the final average crack width, w, depend on the quantity and distribution of reinforcement, the
quality of bond between the concrete and steel, the amount of shrinkage, and the concrete strength.
Let the final shrinkage-induced restraining force be N(∞).

Fig. 4 - Concrete stress history in uncracked Region 1 (Gilbert, 1992) [8]

After all shrinkage has taken place and the final crack pattern is established, the average concrete
stress at a distance greater than so from the nearest crack is σ*c1 and the steel stresses at a crack and at
a distance greater than so from a crack are σ*s2 and σ*s1, respectively.  Gilbert (1992) [8] developed
the following expressions for the final restraining force N(∞) and the final average crack width w:
Provided the steel quantity is sufficiently large, so that yielding does not occur at first cracking or
subsequently, the final restraining force is given by

( )**

2

*

)( ecsav
s E

C
An

N εσ +−=∞ (9)

*
csε  is the final shrinkage strain; *

eE  is the final effective modulus of the concrete and is given by
*)1/(* φ+= ce EE ; *φ  is the final creep coefficient; n* is the effective modular ratio )/( *

es EE ; C2  =
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2so/(3s - 2so); and σav is the average stress in the uncracked concrete (see Fig. 4) and may be assumed
to be (σc1 + ft )/2 .  The maximum crack spacing is

ξ
ξ

3
)1(2 += oss (10)

and ξ is given by
tecsav

ecsav

fEn
En
++

+−
=

)(
)(

***

***

εσρ
εσρ

ξ (11)

The final steel stress at each crack and the final concrete stress in Regions 1 (further than so from a
crack) are, respectively,

σ*s2 = N(∞)/As          and σ*c1 = N(∞)(1 + C2 ) /Ac  <  ft (12)

Provided the steel at the crack has not yielded, the final crack width is given by
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When the quantity of steel is small, such that yielding occurs at first cracking, uncontrolled and
unserviceable cracking will result and the final crack width is wide. In this case,
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and the final crack width is
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where L is the length of the restrained member.

Numerical Example:

Consider a  5 m long and 150 mm thick reinforced concrete slab, fully restrained at each end. The
slab contains 12-mm diameter deformed longitudinal bars at 300 mm centres in both the top and
bottom of the slab (As = 750 mm2/m). The concrete cover to the reinforcement is 30 mm. Estimate the
spacing, s, and final average width, w, of the restrained shrinkage cracks.
Take  *φ = 2.5, *

csε = - 600 x 10-6, ft = 2.0 MPa, Ec = 25000 MPa, Es = 200000 MPa, n = 8 and fy =
400 MPa. The reinforcement ratio is ρ = 0.005 and from Equation 6,

240
005.010

12 =
×

=os mm.

The final effective modulus is 7143
5.21

000,25* =
+

=eE MPa and the corresponding effective modular

ratio is 28* =n . The constant C1 = 2 so /(3L - 2 so) = 2 x 240/(3 x 5000 - 2 x 240) = 0.0331 and from
Equation 8, the restraining force immediately after first cracking is

300,161
)0331.01(005.080331.0

000,1500.2005.08
=

+×+
×××=crN N/m

The steel stress at the crack σs2 = 161300/750 = 215 MPa and the concrete stress 1cσ  is obtained
from Equation 7: 11.1150000/)0331.01(1613001 =+=cσ  MPa.
The average concrete stress may be approximated by σav = (1.11 + 2.0)/2 = 1.56 MPa and from
Equation 11:

236.0
0.2)71430006.056.1(005.028

)71430006.056.1(005.028
=

+×−×
×−×−

=ξ

The maximum crack spacing is determined using Equation 10:
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837
236.03

)236.01(2402 =
×

+×=s  mm

The constant C2  is obtained from C2 = (2 x 240)/(3 x 839 - 2 x240) = 0.236 and the final restraining
force is calculated using Equation 9:

670,242)71430006.056.1(
236.0

75028)( =×−×−=∞N  N/m

From Equation 12, σ*s2 = 323 MPa, σ*c1 = 1.99 MPa and, consequently, σ*s1 = -76.4 MPa.  The final
crack width is determined using Equation 13:

331.08390006.0240
3
2839

7143
99.1 =






 ×−





 ×−−=w  mm.

Tables 2 and 3 contain results of a limited parametric study showing the effect of varying steel area,
bar size, shrinkage strain and concrete tensile strength on the final restraining force, crack width,
crack spacing and steel stress in a 150 mm thick slab, fully-restrained over a length of 5 m.

Table 2 Effect of steel area and shrinkage strain on direct tension cracking.
(φ*= 2.5, ft = 2.0 MPa and db = 12 mm)

*
csε = - 0.0006 *

csε = - 0.00075 *
csε = - 0.0009As

mm2
ρ

N(∞)
kN

σs2*
MPa

s
mm

w
mm

N(∞)
kN

σs2*
MPa

s
mm

w
mm

N(∞)
kN

σs2*
MPa

s
mm

w
mm

375 .0025 150 400 - 1.37 150 400 - 2.03 150 400 - 2.68
450 .003 180 400 - 1.35 180 400 - 2.01 180 400 - 2.66
600 .004 240 400 - 1.22 234 390 913 0.49 216 360 717 0.50
750 .005 243 324 837 0.31 220 294 601 0.33 197 264 469 0.34
900 .006 233 259 601 0.23 206 229 427 0.24 179 199 332 0.24

1050 .007 224 214 453 0.18 193 184 320 0.18 161 154 247 0.19
1200 .008 215 170 354 0.14 179 149 248 0.15 143 119 191 0.15

Table 3 Effect of bar diameter and concrete tensile strength on direct tension cracking.
(φ*= 2.5, εcs*= -0.0006, As = 900 mm2 and ρ = 0.006)

ft = 2.0 MPa ft = 2.5 MPadb
(mm) N(∞)

kN
σs2*
MPa

s
mm

w
mm

N(∞)
kN

σs2*
MPa

s
mm

w
mm

6 237 263 317 0.12 323 359 482 0.14
10 234 260 508 0.19 320 356 758 0.23
12 233 259 601 0.23 319 354 889 0.27
16 232 257 781 0.30 317 352 1141 0.35
20 230 256 956 0.37 315 350 1385 0.42

4. Control of deflection
The control of deflections may be achieved by limiting the calculated deflection to an acceptably
small value.  Two alternative general approaches for deflection calculation are specified in AS3600
(1), namely ‘deflection by refined calculation’ (Clause 9.5.2 for beams and Clause 9.3.2 for slabs)
and ‘deflection by simplified calculation’ (Clause 9.5.3 for beams and Clause 9.3.3 for slabs).  The
former is not specified in detail but allowance should be made for cracking and tension stiffening, the
shrinkage and creep properties of the concrete, the expected load history and, for slabs, the two-way
action of the slab.
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The long-term or time-dependent behaviour of a beam or slab under sustained service loads can be
determined using a variety of analytical procedures (Gilbert, 1988) [7], including the Age-Adjusted
Effective Modulus Method (AEMM), described in detail by Gilbert and Mickleborough (1997) [12].
The use of the AEMM to determine the instantaneous and time-dependent deformation of the critical
cross-sections in a beam or slab and then integrating the curvatures to obtain deflection, is a refined
calculation method and is recommended.

Using the AEMM, the strain and curvature on individual cross-sections at any time can be calculated,
as can the stress in the concrete and bonded reinforcement or tendons. The routine use of the AEMM
in the design of concrete structures for the serviceability limit states is strongly encouraged.

However, in most design situations, the latter approach (deflection by simplified calculation) is
generally used and its limitations are discussed in detail below.

4.1  Deflection by Simplified Calculation - AS3600:
The instantaneous or short-term deflection of a beam may be calculated using the mean value of the
elastic modulus of concrete at the time of first loading, Ecj, together with the effective second moment
of area of the member, Ief. The effective second moment of area involves an empirical adjustment of
the second moment of area of a cracked member to account for tension stiffening (the stiffening
effect of the intact tensile concrete between the cracks).  For a given cross-section, Ief is calculated
using Branson’s formula (Branson, 1963):

Ief = Icr + (I - Icr)(Mcr/Ms)3   ≤     Ie,max (16)

where Icr is the second moment of area of the fully-cracked section (calculated using modular ratio
theory); I is the second moment of area of the gross concrete section about its centroidal axis; Ms is
the maximum bending moment at the section, based on the short-term serviceability design load or
the construction load; and Mcr is the cracking moment given by

Mcr = Z(f'cf  - fcs + P/Ag) + Pe)   ≥  0.0 (17)

Z is the section modulus of the uncracked section, referred to the extreme fibre at which
cracking occurs; f'cf  is the characteristic flexural tensile strength of concrete; fcs is the
maximum shrinkage induced tensile stress on the uncracked section at the extreme fibre at which
cracking occurs and may be taken as

fcs =  





+ cssE

p
p ε

501
5.1 (18)

where p is the reinforcement ratio (Ast/bd) and εcs is the final design shrinkage strain.

The maximum value of Ief at any cross-section, Ie,max in Equation 16, is I when  p = Ast/bd ≥ 0.005 and
0.6I when p < 0.005.

Alternatively, as a further simplification but only for reinforced concrete members, Ief at each
nominated cross-section for rectangular sections may be taken as equal to

(0.02 + 2.5p)bd3   when  p ≥ 0.005     and     (0.1 – 13.5p)bd3  when  p < 0.005.

The value of Ief  for the member is determined from the value of Ief  at midspan for a simple-supported
beam. For interior spans of continuous beams, Ief  is half the midspan value plus one quarter of the
value at each support, and for end spans of continuous strips, Ief  is half the midspan value plus half
the value at the continuous support. For a cantilever, Ief  is the value at the support.
The term fcs in Equation 17 was introduced in Amendment 2 to AS3600 to allow for the tension that
inevitably develops due to the restraint to shrinkage provided by the bonded tensile reinforcement.



Electronic Journal of Structural Engineering, 1 ( 2001) 28

Equation 18 is based on the expression proposed in Gilbert (1998) [9], by assuming conservative
values for the elastic modulus and the creep coefficient of concrete and assuming about 40% of the
final shrinkage has occurred at the time of cracking. In the calculation of fcs using Equation 18, the
final or long-term value of εcs in the concrete should be used.

This allowance for shrinkage induced tension is particularly important in the case of lightly
reinforced members (including slabs) where the tension induced by the full service moment alone
might not be enough to cause cracking. In such cases, failure to account for shrinkage may lead to
deflection calculations based on the uncracked section properties. This usually grossly
underestimates the actual deflection. For heavily reinforced sections, the problem is not so
significant, as the service loads are usually well in excess of the cracking load and the ratio of
cracked to uncracked stiffness is larger.

For the calculation of long-term deflection, one of two approaches may be used.  For reinforced or
prestressed beams, the creep and shrinkage deflections can be calculated separately (using the
material data specified in the Standard and the principles of mechanics). Alternatively, for reinforced
concrete beam, long-term deflection can be crudely approximated by multiplying the immediate
deflection caused by the sustained load by a multiplier kcs given by

kcs = [2 - 1.2(Asc/Ast)]  ≥  0.8 (19)

where the ratio Asc/Ast is taken at midspan for a simple or continuous span and at the support for a
cantilever.
4.2  What is Wrong with the AS3600 Simplified Procedure and How to Improve it:
The current simplified approach for the calculation of final deflection fails to adequately predict the
long-term or time-dependent deflection (by far the largest portion of the total deflection in most
reinforced and prestressed concrete members). Shrinkage induced curvature and the resulting
deflection is not adequately accounted for when using kcs and no account is taken of the actual creep
and shrinkage properties of the concrete.  The introduction of fcs in the estimation of the cracking
moment is a positive step in improving the procedure, by recognising that early shrinkage can induce
tension that significantly reduces the cracking moment and significantly reduces the instantaneous
stiffness with time. However, the gradual reduction in Ief  with time due to shrinkage and cyclic
loading is still not fully accounted for.  To better model the breakdown of tension stiffening with
time, Equation 18 should be replaced by Equation 20, which was originally proposed by Gilbert
(1999a) [10] but was modified by Standards Australia (for political, rather than technical, reasons).

fcs =  





+ shsE

p
p ε

501
5.2 (20)

A further criticism of the simplified approach is the use of the second moment of area of the gross
concrete section I in Equation 16. It is unnecessarily conservative to ignore the stiffening effect of the
bonded reinforcement in the calculation of the properties of the uncracked cross-section.

The use of the deflection multiplier kcs to calculate time-dependent deflections is simple and
convenient and, provided the section is initially cracked under short term loads, it sometimes
provides a ‘ball-park’ estimate of final deflection. However, to calculate the shrinkage induced
deflection by multiplying the load induced short-term deflection by a long-term deflection multiplier
is fundamentally wrong. Shrinkage can cause significant deflection even in unloaded members
(where the short-term deflection is zero). The approach ignores the creep and shrinkage
characteristics of the concrete, the environment, the age at first loading and so on. At best, it provides
a very approximate estimate. At worst, it is not worth the time involved in making the calculation.
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It is, however, not too much more complicated to calculate long-term creep and shrinkage deflection
separately. As mentioned previously, well established and reliable methods are available for
calculating the time-dependent behaviour of reinforced and prestressed concrete cross-sections
(Gilbert, 1988) [7]. A simple method suitable for routine use in design is outlined below.

The load induced curvature, κ(t), (instantaneous plus creep) at any time t due to sustained service
actions may be expressed as

κ(t) = κi(t)(1 + φ/α) (21)
where κi(t) is the instantaneous curvature due to the sustained service moment Ms (κi(t) = Ms/EcIef );
for an uncracked cross-section Ief  should be taken as the second moment of area of the uncracked
transformed section, while for a cracked section, Ief  should be calculated from Equation 16 (with fcs

calculated using Equation 20 when estimating the final long-term curvature); φ is the creep
coefficient at time t; and α is a term that accounts for the effects of cracking and the ‘braking’ action
of the reinforcement on creep and may be estimated from Equations 22a, 22b or 22c.

For a cracked reinforced concrete section in pure bending, α = α1, where

α1 = [0.48 p - 0.5] [1 + (125 p + 0.1)(Asc/Ast)1.2]            (22a)

For an uncracked reinforced or prestressed concrete section, α = α2, where

α2 = [1.0 - 15.0 p] [1 + (140 p - 0.1)(Asc/Ast)1.2]            (22b)

where p = Ast/b do and Ast is the equivalent area of bonded reinforcement in the tensile zone at depth
do (the depth from the extreme compressive fibre to the centroid of the outermost layer of tensile
reinforcement). The area of any bonded reinforcement in the tensile zone (including bonded tendons)
not contained in the outermost layer of tensile reinforcement (ie. located at a depth d1 less than do)
should be included in the calculation of Ast by multiplying that area by d1/do). For the purpose of the
calculation of Ast, the tensile zone is that zone that would be in tension due to the applied moment
acting in isolation.  Asc is the area of the bonded reinforcement in the compressive zone.

For a cracked, partially prestressed section or for a cracked reinforced concrete section subjected to
bending and axial compression, α may be taken as

α = α2 + (α1 - α2)(dn1/dn)2.4           (22c)

where dn is the depth of the intact compressive concrete on the cracked section and dn1 is the depth of
the intact compressive concrete on the cracked section ignoring the axial compression and/or the
prestressing force (ie. the value of dn for an equivalent cracked reinforced concrete section containing
the same quantity of bonded reinforcement).

The shrinkage induced curvature on a reinforced or prestressed concrete section can be approximated
by





=

D
k shr

sh
εκ (23)

where D is the overall depth of the section, Ast and Asc are as defined under Equation 22b above, and
the factor kr  depends on the quantity and location of the bonded reinforcement and may be estimated
from Equations 24a, 24b, 24c or 24d.

For an uncracked cross-section, kr = kr1, where

kr1  =  (100 p - 2500 p2) 
3.1

11
5.0 





−





 −

st

sco
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D
d when p = Ast/b do ≤ 0.01            (24a)
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kr1  =   (40 p + 0.35) 
3.1

11
5.0 





−





 −

st

sco

A
A

D
d when p = Ast/b do > 0.01            (24b)

For a cracked reinforced concrete section in pure bending, kr = kr2, where

kr2  =  1.2 











−

ost

sc
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A
A

5.01            (24c)

For a cracked, partially prestressed section or for a cracked reinforced concrete section subjected to
bending and axial compression, kr may be taken as

kr = kr1 + (kr2 - kr1)(dn1/dn)            (24d)

where dn is the depth of the intact compressive concrete on the cracked section and dn1 is the depth of
the intact compressive concrete on the cracked section ignoring the axial compression and/or the
prestressing force (ie. the value of dn after cracking for an equivalent cracked reinforced concrete
section containing the same quantity of bonded reinforcement).

Equations 22, 23 and 24 have been developed from parametric studies of a wide range of cross-
sections analysed using the Age-Adjusted Effective Modulus Method of analysis (with typical results
of such analyses presented and illustrated by Gilbert ,2000).

When the load induced and shrinkage induced curvatures are calculated at selected sections along a
beam or slab, the deflection may be obtained by double integration. For a reinforced or prestressed
concrete continuous span with the degree of cracking varying along the member, the curvature at the
left and right supports, 1κ  and rκ  and the curvature at midspan mκ  may be calculated at any time
after loading and the deflection at midspan Δ may be approximated by assuming a parabolic
curvature diagram along the span, ! :

)10(
96 1

2

rm κκκ ++=∆ ! (25)

The above equation will give a reasonable estimate of deflection even when the curvature diagram is
not parabolic and is a useful expression for use in deflection calculations.

4.3  Deflection Calculations - Worked Examples:
Example 1

A reinforced concrete beam of rectangular section (800 mm deep and 400 mm wide) is simply-
supported over a 12 m span and is subjected to a uniformly distributed sustained service load of 22.22
kN/m.  The longitudinal reinforcement is uniform over the entire span and consists of 4 Y32 bars
located in the bottom at an effective depth of 750 mm (Ast = 3200 mm2) and 2 Y32 bars in the top at a
depth of 50 mm below the top surface (Asc = 1600 mm2).  Calculate the instantaneous and long-term
deflection at midspan, assuming the following material properties:
        f'c = 32 MPa; f'cf = 3.39 MPa; Ec = 28,570 MPa; Es = 2 x 105 MPa; φ = 2.5; and εcs = 0.0006.
For each cross-section, p = Ast/bd = 0.0107.

The section at midspan:
The sustained bending moment is Ms = 400 kNm. The second moments of area of the uncracked
transformed cross-section, I, and the full-cracked transformed section, Icr, are I = 20,560 x 106 mm4

and Icr = 7,990 x 106 mm4. The bottom fibre section modulus of the uncracked section is Z = I/yb =
52.7 x 106 mm3.  From Equation 20,

fcs = 




 ×××

×+
× 0006.0102

0107.0501
0107.05.2 5  = 2.09 MPa
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and the time-dependent cracking moment is obtained from Equation 17:
Mcr = 52.7 x 106 (3.39 - 2.09) = 68.5 kNm.

From Equation 16, the effective second moment of area is
Ief  = [7990 + (20560 - 7990)(68.5/400)3] x 106 = 8050 x 106 mm4

The instantaneous curvature due to the sustained service moment is therefore

κi(t) = 
efc

s

IE
M = 

6

6

10805028570
10400

××
×  = 1.74 x 10-6 mm-1.

From Equation 22a: α1 = [0.48 x 0.0107-0.5][1 + (125 x 0.0107 + 0.1)(1600/3200)1.2] = 7.55
and the load induced curvature (instantaneous plus creep) is obtained from Equation 21:

κ(t) = 1.74 x 10-6 (1 + 2.5/7.55) = 2.32 x 10-6 mm-1.

From Equation 24c: kr = kr2 = 
750
800)

3200
16005.01(2.1 ×−×  = 0.96

and the shrinkage induced curvature is obtained from Equation 23:
6

6

1072.0
800

1060096.0 −
−

×=






 ××=csκ mm-1

The instantaneous and final time-dependent curvatures at midspan are therefore
κi = 1.74 x 10-6 mm-1    and    κ = κ(t) + κcs = 3.04 x 10-6 mm-1.

The section at each support:
The sustained bending moment is zero and the section remains uncracked. The load-dependent
curvature is therefore zero. However, shrinkage curvature develops with time. From Equation 24b:

kr = kr1 = 3.1)
3200
16001)(1

8005.0
750)(35.00107.040( −−
×

+×  = 0.276

and the shrinkage induced curvature is estimated from Equation 23:
6

6

1021.0
800

10600276.0 −
−

×=






 ××=csκ mm-1

Deflections:
The instantaneous and final long-term deflections at midspan, ∆i and ∆LT, respectively, are obtained
from Equation 25:

1.2610)074.1100(
96

12000 6
2

=×+×+=∆ −
i  mm

0.4610)02104.31021.0(
96

12000 6
2

=×+×+=∆ −
LT  mm  (= span/260)

It is of interest to note that using the current approach in AS3600, with kcs = 1.4 (from Equation 19),
the calculated final deflection is 60.9 mm.

Example 2

A post-tensioned concrete beam of rectangular section (800 mm deep and 400 mm wide) is simply-
supported over a 12 m span and is subjected to a uniformly distributed sustained service load of 38.89
kN/m. The beam is prestressed with a single parabolic cable consisting of 15/12.7mm diameter
strands (Ap = 1500 mm2) with dp = 650 mm at midspan and dp = 400 mm at each support. The duct
containing the tendons is filled with grouted soon after transfer. The longitudinal reinforcement is
uniform over the entire span and consists of 4 Y32 bars located in the bottom at an effective depth of
750 mm (As = 3200 mm2) and 2 Y32 bars in the top at a depth of 50 mm below the top surface (Asc =
1600 mm2).  For the purpose of this exercise, the initial prestressing force in the tendon is assumed to
be 2025 kN throughout the member and the relaxation loss is 50 kN.  Calculate the instantaneous and
long-term deflection at midspan, assuming the following material properties:
      f'c = 32 MPa; f'cf = 3.39 MPa; Ec = 28,570 MPa; Es = 2 x 105 MPa; φ = 2.5; and εcs = 0.0006.
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The section at midspan:
The sustained bending moment is Ms = 700 kNm. The centroidal axis of the uncracked transformed
cross-section is located at a depth of 415.7 mm below the top fibre and the second moment of area is
I = 21,070 x 106 mm4. The top and bottom fibre concrete stresses immediately after first loading (due
the applied moment and prestress) are -10.11 MPa and -1.55 MPa, respectively (both compressive).
The section remains uncracked throughout.

The instantaneous curvature due to the sustained service moment is

κi(t) = 
IE
PeM

c

s − = 
6

36

102107028570
3.23410202510700

××
××−×  = 0.375 x 10-6 mm-1.

From Equation 22a, with Asc = 1600 mm2 , Ast = As + Ap dp/do = 3200 + 1500x650/750 = 4500 mm2

and, therefore p = Ast/b do = 4500/(400x750) = 0.015:
: α2 = [1.0 - 15.0 x 0.015][1 + (140 x 0.015 - 0.1)(1600/4500)1.2] = 1.22
and the load induced curvature (instantaneous plus creep) is obtained from Equation 21:

κ(t) = 0.375 x 10-6 (1 + 2.5/1.22) = 1.14 x 10-6 mm-1.

From Equation 24b: kr = kr1 = )
4500
16001)(1

8005.0
750)(35.0015.040( −−
×

+×  = 0.536

and the shrinkage induced curvature is obtained from Equation 23:
6

6

1040.0
800

1060054.0 −
−

×=






 ××=csκ mm-1

The instantaneous and final time-dependent curvatures at midspan are therefore
κi = 0.375 x 10-6 mm-1    and    κ = κ(t) + κcs = 1.54 x 10-6 mm-1.

The section at each support:
The sustained bending moment is zero and the section remains uncracked.  The centroidal axis of the
uncracked transformed cross-section (with Ap located at a depth of 400 mm) is located at a depth of
409.4 mm below the top fibre and the second moment of area is I = 20,560 x 106 mm4. The
prestressing steel is located 9.4 mm above the centroidal axis of the transformed section, so that the
prestressing force induces a small instantaneous positive curvature. Shrinkage (and creep) curvature
develops with time.

The instantaneous curvature is

κi(t) = 
IE
PeM

c

s − = 
6
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102056028570
4.91020250

××
−××−  = 0.032 x 10-6 mm-1.

From Equation 22a, with Asc = 1600 mm2 , Ast = As1 + Ap dp/do = 3200 + 1500x400/750 = 4000 mm2

and, therefore p = Ast/b do = 4000/(400x750) = 0.0133:
: α2 = [1.0 - 15.0 x 0.0133][1 + (140 x 0.0133 - 0.1)(1600/4000)1.2] = 1.27
and the load induced curvature (instantaneous plus creep) is obtained from Equation 21:

κ(t) = 0.032 x 10-6 (1 + 2.5/1.27) = 0.09 x 10-6 mm-1.
From Equation 24b:

kr = kr1 = 3.1)
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16001)(1
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750)(35.00133.040( −−
×

+×  = 0.398

and the shrinkage induced curvature is estimated from Equation 23:
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The instantaneous and final time-dependent curvatures at the supports are therefore
κi = 0.032 x 10-6 mm-1    and    κ = κ(t) + κcs = 0.39 x 10-6 mm-1.

Deflections:
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The instantaneous and final long-term deflections at midspan, ∆i and ∆LT, respectively, are obtained
from Equation 25:

7.510)032.0375.010032.0(
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i  mm
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2
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In this example, the ratio of final to instantaneous deflection is 4.3.

5. Control of flexural cracking
5.1  The requirements of AS3600
In AS3600-1994, the control of flexural cracking is deemed to be satisfactory, providing the designer
satisfies certain detailing requirements. These involve maximum limits on the centre-to-centre
spacing of bars and on the distance from the side or soffit of the beam to the nearest longitudinal bar.
These limits do not depend on the stress in the tensile steel under service loads and have been found
to be unreliable when the steel stress exceeds about 240 MPa. The provisions of AS3600-1994 over-
simplify the problem and do not always ensure adequate control of cracking.

With the current move to higher strength reinforcing steels (characteristic strengths of 500 MPa and
above), there is an urgent need to review the crack-control design rules in AS3600 for reinforced
concrete beams and slabs. The existing design rules for reinforced concrete flexural elements are
intended for use in the design of elements containing 400 MPa bars and are sometimes
unconservative. They are unlikely to be satisfactory for members in which higher strength steels are
used, where steel stresses at service loads are likely to be higher due to the reduced steel area
required for strength.

Standards Australia has established a Working Group to investigate and revise the crack control
provisions of the current Australian Standard to incorporate recent developments and to
accommodate the use of high of high strength reinforcing steels. A theoretical and experimental
investigation of the critical factors that affect the control of cracking due to restrained deformation
and external loading is currently underway at the University of New South Wales. The main
objectives of the investigation are to gain a better understanding of the factors that affect the spacing
and width of cracks in reinforced concrete elements and to develop rational and reliable design-
oriented procedures for the control of cracking and the calculation of crack widths.

As an interim measure, to allow the immediate introduction of 500 MPa steel reinforcement, the
deemed to comply crack control provisions of Eurocode 2 (with minor modifications) have been
included in the recent Amendment 2 of the Standard.  In Gilbert (1999b) [11] and Gilbert et al.
(1999) [13], the current crack control provisions of AS 3600 were presented and compared with the
corresponding provisions in several of the major international concrete codes, including BS 8110,
ACI 318 and Eurocode 2. A parametric evaluation of the various code approaches was also
undertaken to determine the relative importance in each model of such factors as steel area, steel
stress, bar diameter, bar spacing, concrete cover and concrete strength on the final crack spacing and
crack width. The applicability of each model was assessed by comparison with some local crack
width measurements and problems were identified with each of the code models. Gilbert et al (1999)
conclude that the provisions of Eurocode 2 appear to provide a more reliable means for ensuring
adequate crack control than either BS 8110 or ACI 318, but that all approaches fail to adequately
account the increase in crack widths that occurs with time.

In Amendment 2, Clause 8.6.1 Crack control for flexure in reinforced beams has been replaced with
the following:
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  8.6.1 Crack control for flexure and tension in reinforced beams   Cracking in reinforced beams
subjected to flexure or tension shall be deemed to be controlled if the appropriate requirements in (a) and
(b), and either (c) or (d) are satisfied. For the purpose of this Clause, the resultant action is considered to
be flexure when the tensile stress distribution within the section prior to cracking is triangular with some
part of the section in compression, or tension when the whole of the section is in tension.

(a) The minimum area of reinforcement required in the tensile zone (Ast.min) in regions where cracking shall
be taken as

Agt = 3 ks Act / fs
where

ks  = a coefficient which takes into account the shape of the stress distribution within the section
immediately prior to cracking, and equals 0.6 for flexure and 0.8 for tension.

Act = the area of concrete in the tensile zone, being that part of the section in tension assuming the
section is uncracked; and

fs   = the maximum tensile stress permitted in the reinforcement after formation of a crack, which shall
be the lesser of the yield strength of the reinforcement (fsy) and the maximum steel stress in Table
8.6.1(A) for the largest nominal bar diameter (db) of the bars in the section.

(b) The distance from the side or soffit of a beam to the centre of the nearest longitudinal bar shall not be
greater than 100mm. Bars with a diameter less than half the diameter of the largest bar in the cross-
section shall be ignored. The centre-to-centre spacing of bars near a tension face of the beam shall not
exceed 300 mm.

(c) For beams subjected to tension, the steel stress (fscr), calculated for the load combination for the short-
term serviceability limit states assuming the section is cracked, does not exceed the maximum steel stress
given in Table 8.6.1(A) for the largest nominal diameter (db) of the bars in the section.

(d) For beams subjected to flexure, the steel stress (fscr), calculated for the load combination for the short-
term serviceability limit states assuming the section is cracked, does not exceed the maximum steel stress
given in Table 8.6.1(A) for the largest nominal diameter (db) of the bars in the tensile zone under the
action of the design bending moment. Alternatively, the steel stress does not exceed the maximum stress
determined from Table 8.6.1(B) for the largest centre-to-centre spacing of adjacent parallel bars in the
tensile zone. Bars with a diameter less than half the diameter of the largest bar in the cross-section shall
be ignored when determining spacing.

                     TABLE 8.6.1(A)               TABLE 8.6.1(B)
          MAXIMUM STEEL STRESS     MAXIMUM STEEL STRESS
FOR TENSION OR FLEXURE IN BEAMS      FOR FLEXURE IN BEAMS

Maximum steel stress
(MPa)

Nominal bar  diameter,
db, (mm)

Maximum steel stress
(MPa)

Centre-to-centre spacing
(mm)

160 32 160 300
200 25 200 250
240 20 240 200
280 16 280 150
320 12 320 100
360 10 360 50
400 8
450 6

Note: Linear interpolation may be
          used.

The amendment is similar to the crack control provisions in Eurocode 2. In essence, the amendment
requires the quantity of steel in the tensile region to exceed a minimum area, Ast.min, and places a
maximum limit on the steel stress depending on either the bar diameter or the centre-to-centre spacing
of bars. As in the existing clause, a maximum limit of 100 mm is also placed on the distance from the
side or soffit of a beam to the nearest longitudinal bar.
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5.2  Calculation of Flexural Crack Widths
An alternative approach to flexural crack control is to calculate the design crack width and to limit
this to an acceptably small value.  The writer has proposed an approach for calculating the design
crack width (Gilbert 1999b).  This approach is similar to that proposed in Eurocode 2, but modified
to include shrinkage shortening of the intact concrete between the cracks in the tensile zone and to
more realistically represent the increase in crack width if the cover is increased.

The design crack width, w , may be calculated from

w = βm  srm ( εsm + εcs.t ) (26)

where srm is the average final crack spacing; βm  is a coefficient relating the average crack width to
the design value and may be taken as βm = 1.0 + 0.025c ≥ 1.7; c is the distance from the concrete
surface to the nearest longitudinal reinforcing bar; and εsm is the mean strain allowing for the effects
of tension stiffening and may be taken as

εsm = (σs/Es)[ 1 - β1β2 (σsr/σs)2 ] (27)

where σs is the stress in the tension steel calculated on the basis of a cracked section; σsr  is the stress
in the tension steel calculated on the basis of a cracked section under the loading conditions causing
first cracking; β1 depends on the bond properties of the bars and equals 1.0 for high bond bars and 0.5
for plain bars; and β2  accounts for the duration of loading and equals 1.0 for a single, short-term
loading and 0.5 for a sustained load or for many cycles of  loading.
The average final spacing of flexural cracks, srm (in mm), can be calculated from

srm = 50 + 0.25 k1 k2 db / ρ (28)

where db is the bar size (or average bar size in the section) in mm; k1 accounts for the bond properties
of the bar and, for flexural cracking, k1 = 0.8 for high bond bars and k1 =1.6 for plain bars; k2 depends
on the strain distribution and equals 0.5 for bending; and ρr is the effective reinforcement ratio,
As/Ac.eff where As is the area of reinforcement contained within the effective tension area, Ac.eff.  The
effective tension area is the area of concrete surrounding the tension steel of depth equal to 2.5 times
the distance from the tension face of the section to the centroid of the reinforcement, but not greater
than 3

1  of the depth of the tensile zone of the cracked section, in the case of slabs.

εcs.t  is the shrinkage induced shortening of the intact concrete at the tensile steel level between the
cracks.  For short-term crack width calculations, εcs.t is zero. Using the age-adjusted effective
modulus method and a shrinkage analysis of a singly reinforced concrete section, see Gilbert (1988),
it can be shown that

εcs.t =  εcs / ( 1 +3 p n ) (13)

where p is the tensile reinforcement ratio for the section (Ast/bd); n  is the age-adjusted modular ratio
(Es/Eef);  Eef is the age-adjusted effective modulus for concrete (Eef =Ec /(1+0.8φ)); and εcs and φ are
final long-term values of shrinkage strain and creep coefficient, respectively.

The above procedure overcomes the major deficiencies in current code procedures and more
accurately agrees with laboratory and field measurements of crack widths.  In Tables 4 and 5, crack
widths calculated using the proposed procedure are presented for rectangular slab and beam sections.
In each case, εcs = -0.0006 and φ = 3.0. In general, the calculated crack widths are larger than those
predicted by either ACI or EC2, but unlike these codes, the proposed model will signal serviceability
problems to the structural designer in most situations where excessive crack widths are likely.
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It should be pointed out that the steel stress under sustained service loads is usually less than 200
MPa for beams and slabs designed using 400 MPa steel. The range of steel stresses in Tables 4 and 5
are more typical of situations in which 500 MPa steel is used.

Table 4    Calculated final flexural crack widths in a 200 mm thick slab

Crack width (mm)
Steel stress, σs (MPa)

Effective
depth, d

(mm)

Bar diam
db

(mm)

Area of
tensile steel,
Ast (mm2/m)

Bar spacing,
s

(mm) 200 250 300
174 12 1044 108 0.226 0.279 0.330
172 16 1032 195 0.267 0.331 0.392
170 20 1020 308 0.309 0.384 0.455
168 24 1008 449 0.352 0.438 0.519
166 28 996 618 0.394 0.492 0.585

Table 5    Calculated final flexural crack widths for beam (b = 400 mm and d = 400 mm)

Crack width (mm)
Cover = 25 mm Cover = 50 mm

Steel stress, σs (MPa) Steel stress, σs (MPa)

Bar
diam

db
(mm)

No.
of

bars

Ast
(mm2)

p =
Ast/bd

200 250 300 200 250 300
20 2 620 .0039 .309 .397 .479 .488 .646 .791
20 3 930 .0058 .267 .326 .384 .414 .513 .607
20 4 1240 .0078 .231 .280 .327 .349 .425 .498
24 2 900 .0056 .314 .386 .455 .480 .596 .707
24 3 1350 .0084 .251 .304 .355 .369 .449 .526
24 4 1800 .0113 .214 .258 .301 .304 .367 .430
28 2 1240 .0078 .299 .362 .424 .434 .529 .621
28 3 1860 .0116 .234 .281 .329 .325 .393 .459
32 2 1600 .0100 .285 .344 .402 .394 .477 .558

6. Conclusions
The effects of shrinkage on the behaviour of reinforced and prestressed concrete members under
sustained service loads has been discussed. In particular, the mechanisms of shrinkage warping
in unsymmetrically reinforced elements and shrinkage cracking in restrained direct tension members
has been described. Recent amendments to the serviceability provisions of AS3600 have been
outlined and techniques for the control of deflection and cracking are presented. Reliable procedures
for the prediction of long-term deflections and final crack widths in flexural members have also been
proposed and illustrated by examples.



Electronic Journal of Structural Engineering, 1 ( 2001) 37

Acknowledgment
This paper stems from a continuing study of the serviceability of concrete structures at the
University of New South Wales.  The work is currently funded by the Australian Research
Council through two ARC Large Grants, one on deflection control of reinforced concrete
slabs and one on crack control in concrete structures. The support of the ARC and UNSW is
gratefully acknowledged.

REFERENCES
1. AS3600-1994, Australian Standard for Concrete Structures, Standards Australia, Sydney,

(1994).
2. ACI318-95, Building code requirements for reinforced concrete, American Concrete Institute,

Committee 318, Detroit, 1995.
3. Base, G.D. and Murray, M.H., “New Look at Shrinkage Cracking”, Civil Engineering

Transactions, IEAust, V.CE24, No.2, May 1982, 171pp.
4. Branson, D.E., “Instantaneous and Time-Dependent Deflection of Simple and Continuous RC

Beams”, Alabama Highway Research Report, No.7, Bureau of Public Roads, 1963.
5. DD ENV-1992-1-1 Eurocode 2, Design of Concrete Structures, British Standards Institute, 1992.
6. Favre, R., et al., “Fissuration et Deformations”, Manual du Comite Ewo-International du Beton

(CEB), Ecole Polytechnique Federale de Lausanne, Switzerland, 1983, 249 p.
7. Gilbert, R.I., “Time Effects in Concrete Structures”, Elsevier Science Publishers, Amsterdam,

1988, 321p.
8. Gilbert, R.I., “Shrinkage Cracking in Fully Restrained Concrete Members”, ACI Structural

Journal, Vol. 89, No. 2, March-April 1992, pp 141-149
9. Gilbert, R.I., “Serviceability Considerations and Requirements for High Performance Reinforced

Concrete Slabs”,  Proceedings International Conference On High Performance High Strength
Concrete, Curtin University of Technology, Perth, Western Australia, August 1998, pp 425-439.

10. Gilbert, R.I., "Deflection Calculations for Reinforced Concrete Structures - Why we sometimes
get it Wrong", ACI Structural Journal, Vol. 96, No. 6, November-December 1999(a), pp 1027 -
1032.

11. Gilbert, R.I., “Flexural Crack Control for Reinforced Concrete Beams and Slabs: An Evaluation
of Design Procedures”, ACMSM 16, Proceddeings of the 16th Conference on the Mechanics of
Structures and Materials, Sydney, Balkema, Rotterdam, 1999(b), pp 175-180.

12. Gilbert, R.I. and Mickleborough, “Design of Prestressed Concrete”, E & FN Spon, London, 2nd

Printing, 1997, 504p.
13. Gilbert, R.I., Patrick, M. and Adams, J.C., “Evaluation of Crack Control Design Rules for

Reinforced Concrete Beams and Slabs”, Concrete 99, Bienniel Conference of the Concrete
Institute of Australia, Sydney, 1999, pp 21-29.

Ian Gilbert is Professor of Civil Engineering and Head of the School of Civil and
Environmental Engineering at the University of New South Wales.  His main research interests
have been in the area of serviceability and the time-dependent behaviour of concrete structures.
His publications include three books and over one hundred refereed papers in the area of
reinforced and prestressed concrete structures.   He has served on Standards Australia’s Concrete
Structures Code Committee BD/2 since 1981 and was actively involved in the development of
AS3600. He is currently chairing two of the Working Groups (WG2 – Anchorage  and  WG7 –
Serviceability) established to review AS3600.  Professor Gilbert was awarded the Chapman
Medal by the IEAust in 2000 and is the 2001 Eminent Speaker for the Structural College, IEAust.


	Shrinkage, Cracking and Deflection-
	the Serviceability of Concrete Structures
	
	ABSTRACT
	KEYWORDS

	1. Introduction
	2. Designing for Serviceability
	3. Effects of Shrinkage
	3.1  What is Shrinkage?
	3.2  Shrinkage in Unrestrained and Unreinforced Concrete (Gilbert, 1988) [7]
	3.3  Shrinkage in an unrestrained reinforced concrete member (Gilbert, 1986)
	3.4  Shrinkage in a restrained reinforced concrete member (Gilbert, 1992) [8]

	4. Control of deflection
	4.1  Deflection by Simplified Calculation - AS3600:
	4.2  What is Wrong with the AS3600 Simplified Procedure and How to Improve it:
	4.3  Deflection Calculations - Worked Examples:

	5. Control of flexural cracking
	5.1  The requirements of AS3600


	Nominal bar  diameter,
	
	5.2  Calculation of Flexural Crack Widths

	6. Conclusions
	Acknowledgment
	REFERENCES


