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1 INTRODUCTION 

New and improved construction methods render 
possible bolder and more slender concrete struc-
tures. A basic prerequisite for this development is 
the availability of realistic and efficient computa-
tional tools. Material and geometrical nonlinearities 
have to be taken into account on grounds of safety 
and economy. The possibility of nonlinear analysis 
based on predefined realistic stress-strain curves has 
already been incorporated into several building 
codes (see e.g. CEP-FIP (1993), DIN (2001), 
MCPRC (2002)). Nevertheless, the nonlinear mate-
rial behaviour is usually considered only in the 
cross-sectional design of individual members in 
concrete structures. A coherent analysis and design 
concept is only arrived at, however, when the inter-
nal forces are also determined in a nonlinear analy-
sis. For instance, a nonlinear computation which ac-
curately predicts deformations is essential for a safe 
design of slender concrete columns. Regarding stati-
cally indeterminate systems, a consideration of the 
internal force redistribution due to nonlinearities can 
prevent local underestimation of internal forces, de-
formations and ductility requirements. Furthermore, 
internal force redistribution can lead to a better utili-
sation of the load-bearing capacity of the system, 
possibly resulting in a more economical design. Re-

garding the effect of restraining action (temperature, 
shrinkage, etc.), the computed internal forces will 
generally be smaller when cracking, softening, and 
creep are considered.  

The current research on numeric concrete model-
ing focuses on micro-models including the formula-
tion of three-dimensional material models and three-
dimensional finite elements. With respect to the in-
vestigation of frames, macro-models with one-
dimensional elements are preferred because they are 
easier to establish and to interpret and the cost of 
computation is lower.  

Spacone & El-Tawil (2004) give an overview of 
several frame elements for nonlinear analysis. The 
elements can be classified into displacement-based 
and force-based methods. Displacement-based ele-
ments use shape functions to describe the displace-
ment along the element depending on the nodal dis-
placements. They are derived from a weak 
equilibrium condition and satisfy displacement con-
tinuity at the element ends but not necessarily equi-
librium. Force-based elements, also referred to as 
flexibility-based, assume interpolation function for 
the distribution of the internal forces depending on 
the nodal forces. They have turned out to be very 
robust and need fewer degrees of freedom for com-
parable accuracy. The main challenge is the integra-
tion of such elements in a nonlinear analysis pro-
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gram. A complex procedure is required for deriving 
the element stiffness matrix and element resisting 
forces. Spacone et al. (1996) propose an iterative 
element state determination by adjusting the element 
forces until the predetermined displacements are 
achieved. The stiffness matrix follows from the in-
verted flexibility matrix. Neuenhofer & Filippou 
(1997) present a method for directly determining the 
element state thus avoiding an iterative procedure at 
element level. By means of interpolation functions 
for the curvature, that approach is adapted to geo-
metrical nonlinearity considering small deforma-
tions but is restricted to material linearity (Neuen-
hofer & Filippou 1998).  

The approach presented here allows for geomet-
rical nonlinearity including large displacements and 
rotations and material nonlinearity. Neither dis-
placement nor force shape functions are required. 
Instead, the axial strain and curvature distributions 
along the element are segmentally approximated by 
polynomials. The respective advantages of three 
methods are combined. Olsen (1986) and Pfeiffer 
(2004) explore similar ideas and can be considered 
precursors to the approach presented here. It is suit-
able for the computation of general reinforced or 
prestressed concrete frames, but also for steel-
concrete composite frames and others. In contrast to 
lumped models, which concentrate the nonlinearity 
at element ends, the combined method represents a 
distributed approach.  

At system level, the computation is incrementally 
and iteratively carried out using the displacement 
method. The advantage of the displacement method 
lies in the ease of representation of a frame's topol-
ogy by elements. System nodes are mainly defined 
at the beamand column end and connection points, 
and at cross-sectional changes. At element level, an 
extended transfer matrix method is used 
(Wallmichrath & Starossek 2004). In the transfer 
matrix scheme, the state variables are recursively 
transferred over a chosen number of discrete seg-

ments from one end of the element to the other. The 
state variables comprise the internal forces and the 
displacement quantities. The partitioning of an ele-
ment into segments depends on the local stiffness 
gradient. Based on given element end node dis-
placements, which follow from the first level com-
putation at system level, the internal forces at the 
element end nodes and at the segments are deter-
mined. Having obtained the internal forces, the tan-
gent stiffness matrix is calculated using difference 
quotients. The remaining unbalance forces at the 
element end nodes enter into the next iteration step 
at system level and decrease with each further itera-
tion step until achieving convergence.  

Material nonlinearity along the element is con-
sidered within the cross section module via uniaxial 
fiber stress-strain relations. Curvature and axial 
strain for a given set of internal forces are iteratively 
determined by cross-sectional integration. In this 
way, the strain state corresponds exactly to the in-
ternal forces. The axial strain and curvature are the 
basis for the computation of displacements over the 
segment length by the transfer matrix method. This 
procedure is contrary to the classic displacement-
based method, where the strain state is obtained via 
the derivations of the displacement shape functions. 
The reader is referred to Figure 1 for a schematic 
description of the hierarchical structure of the 
method. For a detailed discussion see Wallmichrath 
(2007). 

2 ASSUMPTIONS 

 
− All cross section dimensions are small compared 

to the beam length. 
− The system is plane. 
− Cross sections are non-deformable and symmet-

ric to the system plane. 
− The cross sections remain plane, shear deforma-

tions are neglected (Bernoulli hypothesis). 

 
 
Figure 1. Levels of the combined method. 
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− A perfect bond of all cross sectional components 
is assumed. 

− Strain states and normal stress states are assumed 
to be uniaxial to the beam's longitudinal axis. 

− Material behaviour is time-invariant. 
− Strains are sufficiently small. 
− Large large displacements and rotations are al-

lowed. 
− Loads are static and act in the plane of the struc-

ture. 
 
An extension to space frames and time-dependent 
effects is possible. 

3 CROSS SECTION MODULE 

 
In compliance with material nonlinearity, the cross 
section module supplies the strain state for any 
given set of internal forces applied to arbitrary po-
lygonal shaped cross sections. Both non-prestressed 
as well as prestressed reinforcement are considered. 
Regarding the method presented here, the transfer 
matrix method (superscript "TMM" in the equation 
below) delivers the internal forces. The strain state 
is iteratively determined by solving the inverse 
problem. The resulting internal forces of a given 
strain state can be determined directly via integra-
tion of the corresponding stresses over the cross sec-
tion. Stress integration is carried out according to 
Rotter (1985) and Fafitis (2001), respectively, and 
applies to biaxial bending with normal force. With 
regard to the plane problems presented here, how-
ever, integration is limited to uniaxial bending (M) 
with normal force (N). The double integral over a 
cross section is, according to Green's theorem, trans-
formed into a line integral around the edges of the 
cross section. Line integration is carried out numeri-
cally by Gauss-Legendre quadrature. The portion of 
reinforcement regarding the internal forces is deter-
mined through the resulting single forces.  

On the basis of suitable initial values for the 
strain state the latter is improved in every single step 
j using the Newton-Raphson method 
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Suitable initial values for the curvature κ(0) and 
the strain at centroid )0(

0ε  can be taken from the 
nearby cross section or the last step of a preceding 
iteration within the scope of the transfer matrix 
method. The partial derivatives are replaced by dif-
ference quotients. Cross section iteration will end if 
either a previously defined convergence criterion is 
fulfilled or if it is impossible to find a match after a 

defined number of iterations. The latter will occur if 
the outer internal forces exceed the load-bearing ca-
pacity of the cross section. The determination of the 
cross-sectional strain state constitutes approximately 
90 % of total computation time. 

4 TRANSFER MATRIX METHOD 

The transfer matrix method is appropriate to the 
analysis of unbranched frame structures. However, 
due to the combination with the displacement 
method arbitrary branched frame structures can be 
analysed. An extensive presentation of the transfer 
matrix method is provided by Pestel & Leckie 
(1963). The application of the method for the de-
termination of the stiffness matrix and nodal load 
vector of non-prismatic elastic frame elements is 
presented by Luo et al. (2007). The transfer matrix 
method has also practical implementations in vari-
ous fields including bridge construction (Rosignoli 
1999), high-rise buildings (Akintilo & Syngelakis 
1989) as well as in vibration control (Yang & 
Samali 1983).  

The fundamental idea behind the method is the 
transfer of the state variables segment by segment 
from an element's beginning to its end in compli-
ance with the loads, stiffnesses and intermediate 
conditions. For simple systems, a transfer can be 
formulated via a transfer matrix. Material und geo-
metrical nonlinearities are captured in a recursive 
procedure. Within the framework of the combined 
method, the transfer matrix method is applied at 
element level. 

4.1 Application to frame elements 

For the transfer matrix method, the element is sub-
divided into np segments of length lp. The adaptive 
discretisation depends on the local stiffness gradient 
and produces no additional global degrees of free-
dom. Element loads can quite simply be included in 
the procedure. A separate post-computation is not 
required.  

Starting with the left element end, internal forces 
and displacements are successively determined for 
each single segment by using equilibrium conditions 
or by integration of the corresponding axial strains 
and curvatures, respectively. Since the equilibrium 
condition has to be determined by taking the defor-
mations into account, the single segments are moved 
and rotated before their state variables are deter-
mined. Each segment is tangent to the end point of 
the preceding segment. The first segment is tangent 
to the left element end node. Figure 2 shows a part 
of the element with the translated and rotated seg-
ment p (full line). In the lower part of the figure the 
element is depicted as a dotted line in its unde-
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formed position with the line loads. In its deformed 
position the element is shown as a dash-dotted line.  

Due to the geometrical nonlinearity and segmen-
tation of the element, one has to distinguish between 
different reference systems regarding internal forces 
and displacements. Internal forces which relate to 
the undeformed element axis are described as S and 
T for axial force and transverse force, respectively. 
The values u, w, and φ  stand, respectively, for lon-
gitudinal and transverse displacements and rotation. 
Corresponding values with a horizontal line are de-
fined in the local reference system of the translated 
and rotated but undeformed segment. Internal forces 
which are oriented relatively to the deformed line 
are referred to in the usual way as normal force N 
and shear force V. The respective forces can be con-
verted through an orthogonal transformation. Re-
garding the rotation invariant bending moment M, 
differentiation and transformation are unnecessary.  

Because of the geometrical and material nonlin-
earities, a direct computation of a segment's state 
variables is no longer possible. But when the trans-
verse and longitudinal displacements are applied se-
quentially, one after the other, the procedure be-
comes a straightforward one. First the axial 
elongation of the segment is determined. Subse-
quently the transverse displacements are computed 
taking into account the changed length of the seg-
ment. The curvature distribution over the segment's 
length is quadratically approximated with the help 
of interpolation nodes at both segment's ends and 
center. A two-stage computation of the transverse 

displacement is used to identify the interaction of 
the deformation and the internal forces. In the first 
stage, transverse displacements are determined in 
the axially stretched segment according to the first-
order theory (i.e. neglecting the P-∆ effect). The 
second stage takes into account the deformations de-
termined in the preceding stage while computing in-
ternal forces and deformations anew. From these de-
formations a amplification factor ensues which is 
used to determine the final transverse displace-
ments, rotations and bending moments. 

4.2 Segment level 

It is assumed that the internal forces at the left seg-
ment end lp ,f =[ lplplp MTS ,,, ,, ]T are known, since 
they follow from the preceding segment or the ele-
ment end node. The cross section module provides 
the curvature κp,l

 and the axial strain ε0,p,l consistent 
with the internal forces. The internal forces are al-
ways converted into the local normal force N and 
the corresponding bending moment M. By means of 
the axial strain the new length of the left segment 
part is determined: lpl , = (1+ ε0,p,l) lp/2. The axial 
strain includes the strain of the normal force and, 
due to material nonlinearity, the bending moment as 
well. Considering the new length of the left segment 
half and the transformed loads, the internal forces at 
the segment center mp ,f =[ mpmpmp MTS ,,, ,, ]T are de-
termined using equilibrium conditions. Starting with 
these internal forces the right segment part is simi-
larly computed yielding rp ,f =[ rprprp MTS ,,, ,, ]T. For 

 
Figure 2. Recursive transfer matrix method. 
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three points along the segment the internal forces 
and, after application of the cross section module, 
the corresponding curvatures of the first computa-
tion stage are known. The distribution of the curva-
ture over the segment length κ(I)(x;¯ ) is approxi-
mated using a quadratic parabola. By integration of 
this function the rotations and transverse displace-
ments are determined for both the segment's center 
and its end according to  

( ) ( ) p

l
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where 
pl  is the new stretched segment length. In the 

second stage, the same procedure is used to deter-
mine internal forces, the corresponding curvatures, 
the resulting transverse displacement of the segment 
end )(

,
II

rpw , and take into account the deformations 
found during the first computation stage. The new 
displacements would lead to further changes in the 
internal forces. When this procedure is continued 
one obtains an infinite sequence of displacements. 
Assuming affinity and a constant ratio between two 
succeeding displacement increments, the final dis-
placement corresponds to a geometric series, which 
converges to  
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The same factor is applied to the rotations and bend-
ing moments  
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The changes in axial deformation through geometri-
cal nonlinearity are neglected. The longitudinal dis-
placements are therefore determined directly from 
change in length of the segment according to the 
first computation stage pp

I

rprp lluu −=≈ )(
,, . Together 

with the axial force S;¯ p,r and transverse force T;¯ p,r, 
all internal forces at the segment end are known. 

4.3 Load and displacement transfer between 
segments 

According to the equilibrium of forces at the con-
nection node of the segments, the transfer to the 
subsequent segments is carried out using an or-
thogonal rotation matrix  

rplp
rp
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,

fRf ⋅−=+ φ
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































−−=

















+

+

+

rp

rp

rp

rprp

rprp

lp

lp

lp

M

T

S

M

T

S

,

,

,

,,

,,

,1

,1

,1

100

0cossin

0sincos

φφ

φφ

. 

Adding the fictitious segments 0 and np+1 in-
cludes the internal forces at the left and right ele-
ment end node to a recursive formulation 
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Together, Equations 6 and 7 provide for a com-
plete, recursive expression for the internal forces of 
the right element end node. The computation of the 
displacements is carried out by summation of the 
deformations of the segments within the element 
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The portion of the respective segments to the dis-
placement values comprises of the rigid body mo-
tion vp,RMB and the displacement components of the 
segment deformation rp ,v . These have to be trans-
formed to the reference system of the undeformed 
element axis 

RBM,,, prprp p
vvRv +⋅= φ                                         

(9) 
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The computation of deformations regarding the 

respective segments is carried out within the scope 
of the theory of small deformations. However, the 
transformation in Equation 9 considers large rota-
tions. 

5 ELEMENT LEVEL 

5.1 Resisting forces 

At the element level, the internal forces at the ele-
ment end nodes are determined using the transfer 
matrix method. The first level computation of the 
system using the general displacement method (su-
perscript "DM") provides for the displacement of 
system's nodes. These displacements are trans-
formed to the element reference system, and the 
rigid body motion is deducted. The task is now to 
find the internal forces at the left element node fl 
which lead to the given relative element node dis-
placements DM

relv . The computation is incrementally 
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carried out using the Newton-Raphson method. On 
the basis of suitable initial values for fl and with the 
help of the transfer matrix method, the resulting dis-
placements at the right element end node are deter-
mined in each step. If the left element end node is 
chosen as the reference node for displacement val-
ues, the displacement values of the right node are 
equivalent to the relative displacements )(i

rv = )(
rel
i

v . 
With regard to iteration, the following applies: 
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The matrix )(

,
i

lrTk  describes the linearised relation 
between the left internal forces and the right dis-
placements. The matrix mathematically corresponds 
to the inverse Jacobian matrix lr fv ∂∂ / . Mechani-
cally, this matrix forms a tangent stiffness matrix or, 
before inversion, a tangent flexibility matrix. The 
matrix components are approximately computed us-
ing a difference quotient. This is accomplished by 
varying each of the left node internal forces by a 
small amount and then determining the resulting de-
formation values at the right node using the transfer 
matrix method. 

5.2 Tangent stiffness matrix  

The element tangent stiffness matrix kT describes 
the locally linearised relation between the six nodal 
forces δf and the six element degrees of freedom δv. 
The components are arranged according to the left 
and right node 

,,
,,

,,









=








⋅







∂=⋅

r

l

r

l

rrTrlT

lrTllT

T
f

f

v

v

kk

kk
fvk

δ

δ

δ

δ
δ    (11) 



























=



























⋅



























r

r

r

l

l

l

r

r

r

l

l

l

rrTrrTrrTrlTrlTrlT

rrTrrTrrTrlTrlTrlT

rrTrrTrrTrlTrlTrlT

lrTlrTlrTllTllTllT

lrTlrTlrTllTllTllT

lrTlrTlrTllTllTllT

M

T

S

M

T

S

w

u

w

u

kkkkkk

kkkkkk

kkkkkk

kkkkkk

kkkkkk

kkkkkk

δ

δ

δ

δ

δ

δ

δφ

δ

δ

δφ

δ

δ

33
,

32
,

31
,

33
,

32
,

31
,

23
,

22
,

21
,

23
,

22
,

21
,

13
,

12
,

11
,

13
,

12
,

11
,

33
,

32
,

31
,

33
,

32
,

31
,

23
,

22
,

21
,

23
,

22
,

21
,

13
,

12
,

11
,

13
,

12
,

11
,

. 

Submatrix kT,lr links the three right displace-
ments with the three left internal forces. It can be 
taken from the last step of the preceding internal 
force iteration. Submatrix kT,rl is determined in the 
same way as kT,lr. Since all element forces are 
known from the preceding internal force iteration, 

the determination of matrix kT,rl is limited to the ap-
plication of internal force variation on the right 
edge. Accordingly, the transfer matrix method has to 
be formulated from right to left. To provide a sym-
metric tangent stiffness matrix a positive and a 
negative variation is applied. The two resulting ma-
trices are averaged. 

The columns of an element stiffness matrix can 
be interpreted as reaction forces of a fixed end beam 
which result from imposed unit displacement at the 
corresponding degree of freedom. Due to subma-
trices kT,rl and kT,lr three of the reaction forces per 
matrix column are known. Therefore, the remaining 
three are determined using equilibrium conditions. 
Mechanically, the resulting deformed shape repre-
sents the negative influence line of the correspond-
ing reaction force. As an example, Figure 3 illus-
trates the negative influence line for the right 
bending moment.  

 

 
 
Figure 3. Negative influence line for the bending moment at 
the right end of the deformed element. 

6 SYSTEM LEVEL  

Equilibrium at the system nodes is formed according 
to the system's degrees of freedom. Computation is 
incrementally and iteratively carried out using the 
displacement method. The system tangent stiffness 
matrix, and the system load vector are assembled 
from the corresponding element matrices and vec-
tors, respectively. The load is increased step by step 
until total load is reached. Regarding the single load 
steps, the iterative system computation is carried out 
using the Newton-Raphson method. The initial val-
ues for the first load step are taken from a linear 
elastic computation according to first-order theory. 
For a detailed description of this method, the reader 
may e.g. refer to Belytschko et al. (2000). A post-
computation is not required since the transfer matrix 
method has already provided for the state values of 
the last step for all segments. 

7 EXAMPLE  

For an application of the method, the 4.5 m long 
column used in test II.1 by Fouré (1978) is investi-
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gated. An eccentric axial load was applied until fail-
ure in a short-time test. Dimensions and reinforce-
ment of the column, which had pinned support at 
both ends can be seen in Figure 4. By use of symme-
try, the one half of the system is modeled with one  

 
 
Figure 4. Experimental Setup. 
 

 
 
Figure 5. Assumed stress-strain relation for concrete and rein-
forcement. 

 
element. The eccentric load is realised by simulta-
neously applying the axial load P and the moment 
Pe. Material properties which are not directly given 
by Fouré (1978) are determined according to DIN 
(2001).  

The assumed stress-strain curve of concrete in 
compression corresponds to the rational function 
given in DIN (2001), and it is assumed to be bilinear 
in tension (Fig. 5). The stress-strain relationship of 
the reinforcement steel is assumed bilinear with 
strain hardening. For a list of material properties, the 
reader is referred to Table 1. 
 
Table 1. Material properties of concrete and reinforcement. ________________________________________________ 
Concrete       Reinforcement  ________________________________________________ 

fcm = 38.3 N/mm²    fy = 465 N / mm²  
Ecm = 32,000 N/mm²   Es = 20,3000 N/mm²  
fctm = 2.9 N/mm²     ft = 511.5 N/mm²  
εc1 = -2.3 mm/m     εu = 25 mm/m  ________________________________________________ 
 

In Figure 6 the load P is plotted versus the trans-
verse displacement wm at mid-height of the column. 
It can be seen that the result of the combined-
method analysis closely follows the plot of the test 
data and reproduces the ultimate load with good ac-
curacy. 

 

 
 
Figure 6. Load-displacement plot. 

8 CONCLUSIONS 

An approach for the nonlinear analysis of plane rein-
forced concrete frames is presented. Both material 
and geometrical nonlinearities including large large 
displacements and rotations are considered. The ap-
proach is a combination of the displacement method 
and the transfer matrix method. Material nonlineari-
ties are efficiently taken care of by a cross section 
module, whereby the strain state corresponds ex-
actly to the internal forces. Due to the use of the 
transfer matrix method this combined approach dis-
penses with displacement and force shape functions. 
The distributions of curvature and axial strain are 
segmentally approximated by polynomials. The nu-
merical analysis of a slender column and the com-
parison with test data show good accuracy. 

This approach can be extended to time-dependent 
effects. Creep and shrinkage models have recently 
been incorporated into the existing cross-section 
module (Wallmichrath 2007). An extension to space 
frames demands a sophisticated upgrading of the 
cross-section module to six internal forces (Löhning 
et al. 2007), the computation of the spatial dis-
placement values, and a consideration of interaction 
between the spatial internal forces (Schenk et al. 
2007). 

APPENDIX 

f = vector of internal forces 
kT = element tangent stiffness matrix 
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kT,lr = submatrix of stiffness matrix 
23

,lrTk  = matrix coefficient 
l = length of segment 

M = bending moment 
np = number of segments 
N = normal force 

φR  = rotation matrix corresponding 
to φ  

S = axial force 
T = transverse force 
u = longitudinal displacement 
v = displacement vector 
V = shear force 
w = transverse displacement 

x,z  = coordinate 
β = ratio between deformation in-

crements 
ε0 = strain at centroid 
ĸ = curvature 

φ  = rotation 
subscript 

l,m,r 
 

= 
 
left, middle, right 

p = segment number 
rel = difference between element 

nodes 
 

superscript 
(i), (j) 

 
= 

 
iteration step 

(I), (II) = computation stage 
TMM, DM = value of transfer matrix, dis-

placement method 
Symbols with a bar are defined in the section refer-
ence system. 
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