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1 INTRODUCTION 

In the Equivalent Lateral Force Procedure as speci-
fied in the ASCE/SEI 7-05 [1], the approximate 
fundamental period (Ta) of a structure in the direc-
tion being considered can be determined using the 
following equation: 

x

nta hCT =                                     (1) 

where hn = the height above the base to the highest 
level of the structure; Ct = 0.0724 for steel moment-
resisting frames, 0.0466 for reinforced concrete 
moment-resisting frames; and x = 0.8 for steel mo-
ment-resisting frames, 0.9 for reinforced concrete 
moment-resisting frames. 

 In the Static Force Procedure as specified in the 

Uniform Building Code [2], there are two methods 

for determining the fundamental period (T). The first 

(known as Method A) is an approximate method us-

ing the following formula: 
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where Ct = 0.0853 for steel moment-resisting frames 
and 0.0731 for reinforced concrete moment-resisting 
frames. 

The second method (known as Method B) is 

based on the structural properties and deformational 

characteristics of the resisting elements and is a 

more rational approach. In this approach, the fun-

damental period T can be computed using the fol-

lowing formula: 

 









÷







= ∑∑

==

n

i

ii

n

i

ii fgwT
11

22 δδπ              (3) 

 

where wi = the portion of the total seismic dead 

load located at or assigned to level i; δi = the hori-

zontal displacement at level i relative to the base due 

to applied lateral forces; g = the acceleration due to 

gravity; and fi = the lateral force at level i. 
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Although Eq. (3) is a fairly accurate formula for 

the computation of the fundamental period of a 

frame, it is not commonly used by structural engi-

neers because the applied lateral force and the hori-

zontal displacement at each level of the frame are 

required. In order to make Eq. (3) a practical for-

mula which can be used by structural engineers, a 

hand-calculated approach for the computation of 

fundamental periods for low-rise moment frames is 

presented in this paper. This approach uses the Ver-

tical-Distribution-of-Seismic-Forces formula as 

shown in ASCE/SEI 7-05 to assign the distribution 

of lateral forces over the height of the frame: 
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where Fx = the lateral force induced at level x of the 
frame; wi, wx = the portion of the total gravity load 
of the structure assigned to level i or x, respectively; 
hi, hx = the height from the base to level i or x, re-
spectively; k = a distribution exponent related to the 
frame period, k = 1 for a frame having a period of 
0.5 second or less (note that since this paper is deal-
ing with low-rise frames, k = 1 is assumed for all the 
examples presented; also note that this assumption 
shall be made only for the computation of the fun-
damental periods of the frames) ; and V = the total 
design lateral force or shear at the base of the frame. 

This hand-calculated approach also uses the gen-

eral stiffness matrices presented later in this paper to 

compute the horizontal displacement at each level of 

a frame. 

2  EXAMPLE FOR THE COMPUTATION OF 
THE FUNDAMENTAL PERIOD OF A FRAME 
WITH RIGID BEAMS 

The following example demonstrates the accuracy of 
the approach using Eqs. (3) and (4) for the computa-
tion of the fundamental period of a frame with rigid 
beams. 

Example: Compute the fundamental period of the 

three-story frame shown in Fig. 1. Assume that the 

beams are rigid (i.e., the flexural rigidity = ∞ for 

each beam). The column sizes [3] are shown in the 

figure. The moment of inertia about the x-axis is Ix = 

8.91 (10
8
) mm

4
 for the W14×176 columns and is Ix 

= 5.16 (10
8
) mm

4
 for the W12×136 columns. The 

modulus of elasticity is E = 2.00 (10
5
) MPa for all 

columns. The weight of each floor = 890 kN (200 

kips). Neglect the shear and axial deformations for 

each column and beam.   

Approach A (using Eqs. [3] and [4]): 

1. Compute the vertical distribution of seismic 
forces.  Assume the total design lateral force V = 
100 kN. The lateral force induced at each level thus 
can be computed as shown in Table 1 using Eq. (4).  
Note that k =1 (k is a distribution exponent related to 
the frame period) has been assumed in Eq. (4) as 
mentioned early in this paper.  

Table 1.  Computation of the vertical distribution of seismic 
forces 

Level x   hx(m)  wx (kN)   hxwx             

ii

xx

wh

wh

∑
  Fx (kN) 

3    11.89  890   10,582   0.4816   48.16 
2      8.23  890      7325   0.3333   33.33 

1      4.57  890      4067   0.1851   18.51 

          ∑ = 21,974        ∑ =100.00 

 

 Compute the horizontal displacement of each 

floor. With the lateral force induced at each level de-

termined, the relative horizontal displacement be-

tween each adjacent level of the frame can then be 

computed using the displacement formula shown in 

Fig. 2.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The relative horizontal displacement between the 

1
st
 floor and the ground floor is 
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Figure 2. Flexural deformation of a column between rigid 
beams 

w1 = 890 kN 

w2 = 890 kN 

4.57 m (15 ft) 

3.66 m (12 ft) 

3.66 m (12 ft) 

w3 = 890 kN 

Figure 1.  Three-story frame with rigid beams 

W14×176 

   

W12×136 



 
 Electronic Journal of Structural Engineering, 9 (2009) 

             

 18 

( ) ( )( )
( )( )

mm2.23

108.91210212

457010100

12
∆

85

33

=

×××

×
=

++
=

x

3
1321

1
EI

hFFF

 

 

The relative horizontal displacement between the 

2
nd

 floor and the 1
st
 floor is  
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The relative horizontal displacement between the 

roof and the 2
nd

 floor is 
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Therefore, the total horizontal displacement at the 

2
nd

 floor is δ2 = ∆1 + ∆2 = 3.84 mm.  Also, the total 

horizontal displacement at the roof (3
rd

 level) is δ3 = 

∆1 + ∆2 + ∆3 = 4.79 mm.   

Compute the fundamental period of the frame.  

Table 2 shows the computations of 2

ii
w δ and fi δi us-

ing the results obtained from Steps 1 and 2. The 

fundamental period of the frame in turn can be de-

termined using Eq. (3) and the results from Table 2: 
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Table 2.  Computation of 
2
iiδw and fi δi 

Level i  wi   fi   δi    
2
iiδw    fiδi  

kN  kN   mm  kN·mm
2
        kN·mm 

3    890  48.16 4.79  20,420   230.7 
2    890  33.33 3.84  13,124   128.0 

1    890  18.51 2.23     4426     41.3 

             ∑ = 37,970    ∑ = 400.0 

 

Approach B (using the dynamic analysis): 

The following demonstrates the computation of the 
fundamental period of the frame using the dynamic 
analysis.  

The equation of motion for free vibration of a 

multiple-degree-of-freedom structural system is 

 

[ ] [ ]( ) }0{}{2 =− vMK ω  

 

where [K] = the stiffness matrix of the structural 

system; [M] = the mass matrix of the structural sys-

tem; {v} = the displacement vector of the structural 

system; and ω= angular frequency. 

Referring to Fig. 1, the total combined stiffness of 

the two columns in the 1
st
 story is 
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The total combined stiffness of the two columns in 
the 2

nd
 and 3

rd
 stories is 
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The mass of the roof and the floors is 
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Setting the determinant equation to zero, that is, 

det [ ] [ ]( ) }0{2 =− MK ω , results in the 1
st
 modal fre-

quency 1ω = 10.16 rad/sec, the 2
nd

 modal frequency 

2ω = 28.83 rad/sec, and the 3
rd

 modal frequency 

3ω = 42.28 rad/sec. The fundamental period, T1, of 

the frame can then be determined to be 
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The above results show that the fundamental pe-

riod obtained from the dynamic analysis agrees with 

that obtained from Eqs. (3) and (4) for the three-

story frame with rigid beams as shown in Fig. 1.  

3. GENERAL STIFFNESS MATRICES FOR 
MOMENT FRAMES WITH FLEXURAL BEAMS 

As shown in the previous example, using Eq. (3) in-
volves the computation of the horizontal displace-
ments of the frame under consideration.  The com-
putation of the horizontal displacements for a 
moment frame with flexural beams, however, is very 
time consuming. A general stiffness matrix is there-
fore introduced in this paper in order to simplify the 
computation of the horizontal displacements for 
moment frames with flexural beams. 

The general stiffness matrix of a three-story, 

three-bay moment frame with fixed column bases as 

shown in Fig. 3 can be constructed using the follow-

ing procedure: 

Referring to Fig. 3, the basic slope deflection 

equation for a beam i-j in the frame is 
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where Mi-j = the moment at the end “i” of the beam 
i-j; Ei-j = the modulus of elasticity of the beam i-j; Ii-j 

= the moment of inertia of the beam i-j; Li-j = the 
length of the beam i-j; θi = the rotation at the end “i” 
of the beam i-j; and θj = the rotation at the end “j” of 
the beam i-j. 

 

 

 

 

 

 

 

 

 

 

 

Setting 
ji

jiji
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L

IE
k

−
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− =
2

, one has the end moment 

equation, ( )
jijiji kM θθ += −− 2 , at the end “i” of the 

beam i-j.  Also, referring to Fig. 3, the basic slope 

deflection equation for a column i-j in the frame is 
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where Mi-j = the moment at the end “i” of the col-

umn i-j; Ei-j = the modulus of elasticity of the col-

umn i-j; Ii-j = the moment of inertia of the column i-

j; Li-j = the length of the column i-j; θi = the rotation 

at the end “i” of the column i-j; θj = the rotation at 

the end “j” of the column i-j; and Rx = ∆x/Li-j, where 

∆x = the relative deflection between the ends of the 

column i-j in the x
th 

story of the frame. 

Setting 
ji

jiji

ji
L

IE
k

−
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− =
2

, one has the end moment 

equation, ( )
xjijiji RkM 32 −+= −− θθ , at the end “i” 

of the column i-j. 

 Since the summation of the end moments at each 

joint equals zero, one has the following equation at 

joint “1” 
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From which, the equation at joint “1” is 
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Similarly, one has the following equations at joints 
“2” through “12” 
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Figure 3.  Laterally loaded three-story, three-bay frame  
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 Since the summation of the end moments of the 

columns in the same story equals the total shear 

forces in that story times the story height, one has 

the following equations for the 3
rd

, 2
nd

, and 1
st
 sto-

ries, respectively 
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The equations developed in Steps 2 and 3 shown 

above are then summarized in the matrix format as 

shown in Eq. (5). Note that ΣkJi shown in Eq. (5) 

represents the summation of the k values of the 

members connected at the joint “i,” while ΣkCx 

represents the summation of the k values of the col-

umns in the x
th

 story. 

4. EXAMPLES FOR THE COMPUTATION OF 
THE FUNDAMENTAL PERIOD OF MOMENT 
FRAMES WITH FLEXURAL BEAMS 

The following examples demonstrate the computa-
tions of fundamental periods of moment frames with 
flexural beams using two approaches; one is the pro-
posed approach (Eqs. [3], [4], and [5]) and the other 
one is the traditional dynamic analysis. 

Example 1: Compute the fundamental period of 

the steel moment frame shown in Fig. 4. The beam 

and column sizes are shown in the figure. The bases 

of the columns are fixed. The moment of inertia 

about the x-axis is Ix = 1.66 (10
9
) mm

4
 for the 

W30×99 beam and is Ix = 1.25 (10
9
) mm

4
 for the 

W14×233 columns. The modulus of elasticity is E = 

2.00 (10
5
) MPa for all members. The weight of the 

roof = 267 kN (60 kips). The height and width of the 

frame are 4.57 m and 8.53 m, respectively. Neglect 

the shear and axial deformations for all members as 

well as the weight of the columns. 

Approach A (using Eqs. [3] and [5]): 

1. Assume the total design lateral force V = 10 

kN. Since this is a one-story frame, the lateral force 

induced at the roof level is 10 kN. 
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2. Since the one-story, one-bay frame shown in 

Fig. 4 is a partial structure of the three-story, three-

bay frame shown in Fig. 3, the frame shown in Fig. 

4 can be extracted from the lower left corner of the 

frame shown in Fig. 3. The four joints of the one-

story, one-bay frame therefore are assigned to be 

joints “9”, “10”, “13”, and “14”, respectively, and 

the height and width of the frame are assigned to be 

“h1” and “l1”, respectively. Also, the lateral force 

applied to the frame is “P1” as shown in Fig. 4. 

The stiffness matrix equation (Eq. [6]) of the sin-

gle-story, single-bay moment frame, therefore, can 

be formed directly from the general stiffness matrix 

equation (Eq. [5]) of the three-story, three-bay mo-

ment frame using the following procedure:   

Step 1: Draw three horizontal lines and three ver-

tical lines through θ9, θ10, and –R1, respectively, on 

Eq. (5) as shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 2: Utilize the stiffness items at the intersec-

tions of the lines shown in Fig. 5 to form the stiff-

ness matrix equation of the single-story, single-bay 

frame shown below (note that P2 = P3 = 0 for a sin-

gle-story frame):   
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














=

















−















−

∑

∑

∑

−−

−−

−−

111

10

9

1C1410139

141010J109

1391099J

1109

hP

0

0

Rkkk3

kkk

kkk

R

θ

θ

θθ

63

32

32
     (6)  

 

Note that 
ji

jiji

ji
L

IE
k

−

−−

− =
2

, as mentioned early in 

this paper. The stiffness items shown in Eq. (6), 

therefore, can be computed to be 

 

( )

( )( ) ( )( )

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
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

 ××
+
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+=
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−−∑
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101.251022
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101.661022
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3838

1391099J
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m374,504kN ⋅=  

 

( ) mkN374,50422 ⋅=+= −−∑ 141010910J kkk , 

 

( ) mkN1,312,91066 ⋅=+= −−∑ 14101391C kkk , and 
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Figure 5. Formation of the stiffness matrix equation for Example 1  
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Figure 4. One-story, one-bay steel moment frame with a flex-
ural beam  
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Substituting the above values into Eq. (6), one has 

( )

( )mkN

45.7

0

0

mkN

1,312,910328,227328,227

328,227374,50477,843

328,22777,843374,504

⋅
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1

10
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The above matrix equation can be represented by 

[ ]{ } { }FUK = , where [ ]K = the stiffness matrix, { }U = 

the displacement vector, and { }F = the force vector. 

From { } [ ] { }FKU
1−

= , one has 

 

( ) 510465 −×−= .R1  

Therefore, the relative horizontal displacement 

between the roof and the ground floor is 

 

( )( ) 0.25mm4.57m105.46∆ 5 =×=×= −

111 hR  

 

3. From Eq. (3), the fundamental period of the 

one-story, one-bay frame is 

( )( )

( )
sec0.164

kN10
sec

mm9810

mmkN0.25267
2

22

2

=
⋅

=

==

π

δ
π

δ

δ
π

gf

w

gf

w
T

2

 

 

Approach B (using the dynamic analysis): 

The system shown in Fig. 4 has three degrees of 
freedom; they are: one lateral displacement (U1) and 
two joint rotations (U2 and U3) as shown in Fig. 6.  
The degrees of freedom caused by joint rotations can 
be eliminated by using the static condensation 
method [4] to simplify the dynamic analysis of the 
moment frame. The following demonstrates the 
computation of the fundamental period of the frame 
shown in Fig. 4 using the static condensation 
method. 

1. The total stiffness matrix K is composed of 

stiffness matrices kdd, kdr, krd, and krr and is de-

noted as 

 









=

rrrd

drdd

kk

kk
K  

where kdd = the displacement stiffness of the col-

umns caused by the deflections of the columns; kdr 

= the displacement stiffness of the columns caused 

by the rotations of the joints; krd = the rotation stiff-

ness of the joints caused by the deflections of the 

columns; and krr = the rotation stiffness of the joints 

caused by the rotations of the joints. 

The stiffness coefficients for joint translation and 

joint rotation as shown in Fig. 7 can be used to de-

termine the value of each kij presented in Fig. 8: 
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Figure 6. Three-degrees-of-freedom system 

h1  

θ = 1 

2L

EI6

 

2L

EI63L

EI12

 

3
L

EI12
 

EI  

∆ = 1 

L

EI2
L

EI4
 

2L

EI6

2L

EI6
 

EI  

(a) Stiffness coefficients for joint translation 

(b) Stiffness coefficients for joint rotation 

Figure 7. Stiffness coefficients for joint translation and 
joint rotation 

L 

L 



 
 Electronic Journal of Structural Engineering, 9 (2009) 

             

 24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Setting U1 = 1 and U2 = U3 = 0 as shown in Fig. 
8(a), one has 
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Setting U2 = 1 and U1 = U3 = 0 as shown in Fig. 
8(b), one has 
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Setting U3 = 1 and U1 = U2 = 0 as shown in Fig. 

8(c), one has 
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The total stiffness matrix K, therefore, is 
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2. The condensed stiffness matrix Kc can be ob-

tained from the following equation [4] 

 

rd

1

rr

T

rdddc kkkkK
−−=                                            (7) 

 

Therefore, one has 
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= 40,056 
m

kN
 

3. The static condensation matrix Kc eliminated 

the joint rotations, U2 and U3.  The three-degrees-of-

freedom system as shown in Fig. 6, therefore, has 

been reduced to a single-degree-of-freedom system.  

The natural period of the structural system, there-

fore, is 
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Figure 8.  Setting Uj = 1 to determine kij for a single-
story, single-bay frame 
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The above results show that the fundamental pe-

riod obtained from the dynamic analysis agrees with 

that obtained from Eqs. (3) and (5) for the one-story, 

one-bay moment frame with a flexural beam as 

shown in Fig. 4. 

Example 2: Compute the fundamental period of 

the three-story, two-bay reinforced concrete moment 

frame shown in Fig. 9.  The exterior column size is 

559 mm × 559 mm (22" × 22"), the interior column 

size is 660 mm × 660 mm (26" × 26"), and the beam 

size is 457 mm × 559 mm (18" × 22").  The 

modulus of elasticity E = 2.48 (10
4
) MPa for all 

members.  The total weight of the roof is 801 kN 

(180 kips) and the total weight of each floor is 934 

kN (210 kips).  Neglect the shear and axial deforma-

tions for all members as well as the weight of the 

columns. 

Approach A (using Eqs. [3], [4], and [5]): 

1. Compute the vertical distribution of seismic 

forces. Assume the total design lateral force V = 100 

kN.  From Eq. (4) one has F1 = 19.87 kN, F2 = 

35.79 kN, and F3 = 44.34 kN. Note that Fi = the lat-

eral force induced at level i of the frame.  Also note 

that k =1 (k is a distribution exponent related to the 

frame period) has been assumed in Eq. (4) as men-

tioned early in this paper.

 

 

     

 

 

 

 

 

 

 

 

 

2.  Compute the horizontal displacement of 
each level of the frame. Considering the factors 
(0.35 for beams and 0.7 for columns as specified in 
Section 10.11.1 of ACI 318-05 [5]) for the computa-
tion of the moments of inertia of reinforced concrete 
beams and columns, one has 

 

( ) ( ) 49

3

mm102.33
12

559457
0.35 ×==bI  

( ) ( ) 49

3

mm105.70
12

559559
0.7 ×==ceI  

( ) ( ) 49

3

mm1011.07
12

660660
0.7 ×==ciI  

where Ib = the moment of inertia of the beams; Ice 

= the moment of inertia of the exterior columns; and 

Ici = the moment of inertia of the interior columns. 

Since the three-story, two-bay moment frame 

shown in Fig. 9 is a partial structure of the three-

story, three-bay frame shown in Fig. 3, the stiffness 

matrix equation of the three-story, two-bay moment 

frame can be formed directly from the general stiff-

ness matrix equation (Eq. [5]) of the three-story, 

three-bay moment frame using the procedure shown 

in the previous example (Example 1).  Thus, from 

Eq. (5) one has Eq. (8) as shown below: 
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Figure 9. Three-story, two-bay reinforced concrete frame 

with flexural beams 
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−−−−−− 111010976653221
kkkkkk
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−−−− 117739551
kkkk

 

 

( ) ( )

m61,864kN

4.57
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⋅=

××
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−

−− 1511139
kk

 

 

( ) ( )

m150,020kN

3.66

1011.07102.482 37

⋅=

××
==

−

−− 10662
kk

 

 

( ) ( )
m120,147kN

4.57

1011.07102.482 37

⋅=
××

=
−

−1410
k  

 

The stiffness of each item presented in Eq. (8), 

therefore, can be determined using the ki-j values de-

termined above.  For example: 

 

( ) m183,640kN22 ⋅=+=∑ −− 51211J
kkk ;  

 

( ) m358,336kN22 ⋅=++=∑ −−− 6232212J
kkkk ; 

 

( ) mN1,827,072k66 ⋅=++=∑ −−− 117106952C
kkkk ; 

and 

 

( ) mN1,463,250k66 ⋅=++=∑ −−− 151114101391C
kkkk  

 

Also, from Step 1 one has 

 

( )( ) m162.28kN3.6644.34 ⋅==33hP  

 

( ) ( )( ) m293.28kN3.6644.3435.79 ⋅=+=+ 232 hPP  

 

( ) ( )( )

m457.00kN

4.5744.3435.7919.87

⋅=

++=++
1321

hPPP
 

Substituting the above values into Eq. (8), results in 

 
R3 = (-) 0.0010191;  
 
R2 = (-) 0.0013149; and  
 
R1 = (-) 0.0009165. 

The relative horizontal displacement between 

each adjacent level of the frame, therefore, can be 

computed to be: 

 

( )( ) 4.19mm4.57m0.0009165 ==×=∆ 111 hR  

 

( )( ) 4.81mm3.66m0.0013149 ==×=∆ 222 hR  

 

( )( ) 3.73mm3.66m0.0010191 ==×=∆ 333 hR  

where ∆1 = the relative horizontal displacement 

between the 1
st
 floor and the ground floor; ∆2 = the 

relative horizontal displacement between the 2
nd

 

floor and the 1
st
 floor; and ∆3 = the relative horizon-

tal displacement between the roof and the 2
nd

 floor. 

Therefore, the total horizontal displacement at the 

2
nd

 floor is δ2 = ∆1 + ∆2 = 9.00 mm. Also, the total 

horizontal displacement at the roof (3
rd

 level) is δ3 = 

∆1 + ∆2 + ∆3 = 12.73 mm. 

3. Compute the fundamental period of the 
frame.  From the lateral forces determined in Step 1 
and from the horizontal displacements determined in 
Step 2, the fundamental period of the frame can be 
determined using Eq. (3): 

 





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2
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(((( ))))(((( )))) (((( ))))(((( )))) (((( ))))(((( ))))

(((( ))))(((( )))) (((( ))))(((( )))) (((( ))))(((( ))))[[[[ ]]]]12.73mm44.34kN9.00mm35.79kN4.19mm19.87kN
sec

9810mm

12.73mm801kN9.00mm934kN4.19mm934kN
2

2

222

++++++++

++++++++
==== π

 

= 0.959 sec 

 

Approach B (using the dynamic analysis): 

Since it is a long process to perform the dynamic 
analysis of the three-story, two-bay frame, only the 
results of the modal frequencies (obtained from the 
dynamic analysis) of the frame are shown below: 

The 1
st
 modal frequency 1ω = 6.55 rad/sec, the 

2
nd

 modal frequency 2ω = 24.62 rad/sec, and the 3
rd

 

modal frequency 3ω = 54.46 rad/sec.   

The fundamental period, T1, of the frame, there-

fore, is 

 

sec9590
2

.
ω

T
1

1 ==
π

 

The above result shows that the fundamental pe-

riod obtained from the dynamic analysis agrees with 

that obtained from the proposed approach (using 



 
 Electronic Journal of Structural Engineering, 9 (2009) 

             

 27 

Eqs. [3], [4], and [5]) for the three-story, two-bay re-

inforced concrete moment frame shown in Fig. 9.  

The approximate fundamental period of the three-

story, two-bay frame given in this example can be 

determined using Eq. (1) (an approximate method 

specified in the Equivalent Lateral Force Procedure, 

ASCE/SEI 7-05): 

 

( ) sec433.089.110466.0
9.0

=== x

nta
hCT  

 

The approximate fundamental period of the frame 

can also be determined using Eq. (2) (the first 

method [known as Method A] specified in the 1997 

UBC Static Force Procedure): 

 

( ) ( ) 0.468sec11.890.0731 4
3

4
3

===
nt

hCT  

 

The above results indicate that the approximate 

fundamental period of the frame obtained either 

from Eq. (1) or from Eq. (2) is quite different from 

that (0.959 sec) obtained either from the dynamic 

analysis or from the proposed hand-calculated static 

approach (using Eqs. [3], [4], and [5]). 

4. RESULTS AND DISCUSSION 

The results obtained from Example 2 in Section 4 
reveal that the approximate fundamental periods ob-
tained using either Eq. (1) (an approximate method 
specified in the Equivalent Lateral Force Procedure, 
ASCE/SEI 7-05) or using Eq. (2) (Method A speci-
fied in the 1997 UBC Static Force Procedure), are 
too rough to be used for the final design of a frame 
and should be used during the preliminary design 
stage only. Furthermore, the proposed hand-
calculated static approach (using Eqs. [3], [4], and 
[5]), can be considered as an accurate approach for 
determining the fundamental period of the frame.  

The hand-calculated static approach, therefore, is 

proposed herein to be used along with the Equiva-

lent Lateral Force Procedure (specified in the 

ASCE/SEI 7-05) to perform both the preliminary 

design and final design of low-rise moment frames. 

The proposed approach is especially recommended 

for the design of reinforced concrete moment frames 

for the following reasons: 

Once the beam and column sizes of a reinforced 

concrete structure have been determined by an archi-

tect, they usually remain unchanged during the 

structural design process. Therefore, once the stiff-

ness matrix (which can be formed directly from the 

general stiffness matrix shown in Eq. [5]) is con-

structed for the preliminary design of a frame, it usu-

ally can be reused for the final design of the frame.   

The computation of the moments of inertia of re-

inforced concrete beams and columns shown in Ex-

ample 2 in Section 4 demonstrates that the proposed 

hand-calculated approach is able to take the effects 

of cracked sections of reinforced concrete elements 

into consideration for the computation of story drifts 

as specified in Section 12.7.3 of the ASCE/SEI 7-

05.     

5. SUMMARY AND CONCLUSIONS 

Although the Equivalent Lateral Force Procedure as 
specified in the ASCE/SEI 7-05 and the Static Force 
Procedure as specified in the 1997 UBC each have 
an approximate method to be used for determining 
the fundamental periods of moment frames, the ap-
proximate fundamental periods derived from these 
two procedures are usually too rough to be used for 
the final design of the frames. Accurate fundamental 
periods of moment frames are traditionally obtained 
using the dynamic analysis, which usually requires 
the use of computer software. 

A hand-calculated static approach, therefore, is 

proposed in this paper to serve as a convenient tool 

that can be used along with the ASCE/SEI 7-05 

Equivalent Lateral Force Procedure to perform both 

the preliminary design and the final design of low-

rise moment frames. Examples presented in this pa-

per have proved that the fundamental periods ob-

tained from the proposed hand-calculated static ap-

proach agree with that obtained from the dynamic 

analysis. The proposed hand-calculated approach, 

therefore, can be considered as an accurate approach 

for determining the fundamental periods of moment 

frames. 

The following are the advantages of using the 

proposed approach to design a moment frame: (1) 

the proposed approach can be carried out by using 

hand calculations only (without the use of computer 

computations); (2) once the fundamental period of a 

frame is determined (using the proposed procedure 

and an assumed seismic base shear), it can be used 

to determine the actual seismic base shear. The ac-

tual vertical distribution of seismic forces, the story 

drifts, and joint rotations of the frame in turn can be 

determined using Eqs. (4) and (5).; (3) once the ac-

tual story drifts and joint rotations of a frame are de-

termined, the final bending moment at the ends of 

each element of the frame can then be determined 

using the basic slope deflection equations discussed 

earlier in this paper.; (4) the proposed approach is 
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able to take the effects of cracked sections of rein-

forced concrete elements into consideration for the 

computation of story drifts as specified in Section 

12.7.3 of the ASCE/SEI 7-05;  (5) the stiffness ma-

trix of any moment frame within three stories in 

height and within three bays in width can be formed 

directly from the general stiffness matrix presented 

in this paper; and (6) the fundamental period of the 

frame obtained from the proposed hand-calculated 

static approach can be used to verify the accuracy of 

that obtained from the dynamic analysis using com-

puter software. 

The following are the limitations of the proposed 

approach presented in this paper: (1) the frame to be 

designed is limited to three stories in height and 

three bays in width; and (2) the columns in the same 

story shall have the same height and the beams in 

the same bay shall have the same length.   
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NOTATION 

Ct    =   numerical coefficient; 
Ei-j     =  modulus of elasticity of the beam (or column) i-j; 
fi      =  lateral force at level i; 
Fx    =  lateral force induced at level x of the frame; 
{F}  =   force vector; 
g      =   acceleration due to gravity; 
hi, hx =  height from the base to level i or x, respectively; 
hn    =  height above the base to the highest level of the struc-

ture; 
Ib  =    moment of inertia of the beams;  
Ice  =  moment of inertia of the exterior columns;   
Ici  =   moment of inertia of the interior columns; 
Ii-j      =  moment of inertia of the beam (or column) i-j; 
Ix   =  moment of inertia about the x-axis; 
K  =   total stiffness matrix 
[K]  =   stiffness matrix of the structural system; 
k      =  distribution exponent related to the frame period; 
Kc  =   condensed stiffness matrix; 

kdd   =  displacement stiffness of the columns caused by the 
deflections of the columns;  

kdr   =  displacement stiffness of the columns caused by the 
rotations of the joints;  

krd   =  rotation stiffness of the joints caused by the deflections 
of the columns;  

krr   =  rotation stiffness of the joints caused by the rotations 
of the joints; 

Li-j  =   length of the beam (or column) i-j; 
Mi-j   =  moment at the end “i” of the beam (or column) i-j; 
[M]  =   mass matrix of the structural system; 
T  =   fundamental period; 
Ta  =   approximate fundamental period; 
{ }U  =   displacement vector;  
V     =  total design lateral force or shear at the base of the 

frame; 
{v} =  displacement vector of the structural system; 
wi     =  portion of the total seismic dead load located at or as-

signed to level i;  portion of the total gravity load of the 
structure assigned to level i; 

wx    =  portion of the total gravity load of the structure as-
signed to level x; 

∆     =  relative horizontal displacement between each adja-
cent level of a frame;  

∆x    =  relative deflection between the ends of a column in the 
x

th 
story of the frame; 

δi     =  horizontal displacement at level i relative to the base 
due to applied lateral forces; 

θi     =  rotation at the end “i” of the beam (or column) i-j; 
θj     =  rotation at the end “j” of the beam (or column)  i-j; and 
ω  =   angular frequency. 


