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ABSTRACT: The second method (known as Method B), specified in the 1997 Uniform Building Code Static
Force Procedure, is a rational and accurate approach for finding the fundamental period of a frame. The for-
mula used in Method B, however, is not a popular formula because it involves time-consuming computations
of frame deflections which usually require the use of computer software. A hand-calculated approach for the
computation of frame deflections using a calculator rather than a computer is suggested in this paper in order
to turn Method B into a practical method for determining the fundamental periods of low-rise moment
frames. The general stiffness matrix of a three-story, three-bay frame presented in this paper is intended to
be used as an aid to compute the deflections for any moment frame within three stories in height and within
three bays in width. Examples shown in this paper illustrate the step by step procedure for the computation
of the fundamental periods of low-rise moment frames using the proposed hand-calculated approach. These
examples also demonstrate that the results obtained from the proposed hand-calculated static approach agree
with that obtained from the dynamic analysis.

Keywords: bending moments, concrete beams, concrete columns, degrees of freedom, dynamic analysis, lat-
eral forces, steel frames, and stiffness.

1 INTRODUCTION T=C/(h)" 2)

In the Equivalent Lateral Force Procedure as speci-
fied in the ASCE/SEI 7-05 [1], the approximate
fundamental period (7,) of a structure in the direc-
tion being considered can be determined using the
following equation:

T, =Ch’ (1)

where hn = the height above the base to the highest
level of the structure; Ct = 0.0724 for steel moment-
resisting frames, 0.0466 for reinforced concrete
moment-resisting frames; and x = 0.8 for steel mo-
ment-resisting frames, 0.9 for reinforced concrete
moment-resisting frames.

In the Static Force Procedure as specified in the
Uniform Building Code [2], there are two methods
for determining the fundamental period (7). The first
(known as Method A) is an approximate method us-
ing the following formula:

where C, = 0.0853 for steel moment-resisting frames
and 0.0731 for reinforced concrete moment-resisting
frames.

The second method (known as Method B) is
based on the structural properties and deformational
characteristics of the resisting elements and is a
more rational approach. In this approach, the fun-
damental period T can be computed using the fol-
lowing formula:

Tszt\/(Zn:wi(ffj+(gzn:ﬁ5ij 3)

where w; = the portion of the total seismic dead
load located at or assigned to level i; J; = the hori-
zontal displacement at level i relative to the base due
to applied lateral forces; g = the acceleration due to
gravity; and f; = the lateral force at level i.
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Although Eq. (3) is a fairly accurate formula for
the computation of the fundamental period of a
frame, it is not commonly used by structural engi-
neers because the applied lateral force and the hori-
zontal displacement at each level of the frame are
required. In order to make Eq. (3) a practical for-
mula which can be used by structural engineers, a
hand-calculated approach for the computation of
fundamental periods for low-rise moment frames is
presented in this paper. This approach uses the Ver-
tical-Distribution-of-Seismic-Forces ~ formula as
shown in ASCE/SEI 7-05 to assign the distribution
of lateral forces over the height of the frame:

Fo=| ) 4)

ZW;h;k

i=1
where F, = the lateral force induced at level x of the
frame; w;, w, = the portion of the total gravity load
of the structure assigned to level i or x, respectively;
hi, h, = the height from the base to level i or x, re-
spectively; k = a distribution exponent related to the
frame period, k = 1 for a frame having a period of
0.5 second or less (note that since this paper is deal-
ing with low-rise frames, k = 1 is assumed for all the
examples presented; also note that this assumption
shall be made only for the computation of the fun-
damental periods of the frames) ; and V = the total
design lateral force or shear at the base of the frame.

This hand-calculated approach also uses the gen-
eral stiffness matrices presented later in this paper to
compute the horizontal displacement at each level of
a frame.

2 EXAMPLE FOR THE COMPUTATION OF
THE FUNDAMENTAL PERIOD OF A FRAME
WITH RIGID BEAMS

The following example demonstrates the accuracy of
the approach using Eqgs. (3) and (4) for the computa-
tion of the fundamental period of a frame with rigid
beams.

Example: Compute the fundamental period of the
three-story frame shown in Fig. 1. Assume that the
beams are rigid (i.e., the flexural rigidity = oo for
each beam). The column sizes [3] are shown in the
figure. The moment of inertia about the x-axis is I, =
8.91 (10*) mm” for the W14x176 columns and is I,
= 5.16 (10*) mm* for the W12x136 columns. The
modulus of elasticity is £ = 2.00 (105) MPa for all
columns. The weight of each floor = 890 kN (200
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kips). Neglect the shear and axial deformations for
each column and beam.

Approach A (using Egs. [3] and [4]):

1. Compute the vertical distribution of seismic
forces. Assume the total design lateral force V =
100 kN. The lateral force induced at each level thus
can be computed as shown in Table 1 using Eq. (4).
Note that k =1 (k is a distribution exponent related to
the frame period) has been assumed in Eq. (4) as
mentioned early in this paper.

Table 1. Computation of the vertical distribution of seismic
forces

hx W.X
F,(kN)

Level x h,(m) w.(kN) how, —_—
Lhw,
3 11.89 890 10,582 0.4816 48.16
2 8.23 890 7325 0.3333 33.33
1 4.57 890 4067 0.1851 18.51
y=21,974 ¥ =100.00

Compute the horizontal displacement of each
floor. With the lateral force induced at each level de-
termined, the relative horizontal displacement be-
tween each adjacent level of the frame can then be
computed using the displacement formula shown in
Fig. 2.

ws = 890 kKN
W12x136 —> S T
w,=890kN | |3.66m (12 fo)
WI2XI36 "800 kN|  [3.66 m (12 1)
W14x176 4.57 m (15 ft)
ju . A

Figure 1. Three-story frame with rigid beams

7777 v

Figure 2. Flexural deformation of a column between rigid
beams

The relative horizontal displacement between the
1* floor and the ground floor is
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_(F+F,+F)h) _
T 12EIL -
=2.23mm

(100x10% f4570)’
122x10° 2x8.91x10°)

The relative horizontal displacement between the
2" floor and the 1* floor is

(F,+F)n _ (81.49x10° (3660)
12(2x10° J2x5.16x10°

> 12EI

)=1.61mm

The relative horizontal displacement between the
roof and the 2" floor is

_FR (48.16x10°)3660)

*U12E1, 12(2x10° [2x5.16%x10°)

Therefore, the total horizontal displacement at the
2" floor is 9= A; + A; = 3.84 mm. Also, the total
horizontal displacement at the roof (3rCl level) is d3 =
A+ Ax+ A3 =479 mm.

Compute the fundamental period of the frame.
Table 2 shows the computations of w.&” and f; J; us-

=0.95mm

ing the results obtained from Steps 1 and 2. The
fundamental period of the frame in turn can be de-
termined using Eq. (3) and the results from Table 2:

T = zﬂ\/(gwidz}(ggfﬁi}

37,970 kN mm?>

79810 rznm (400 kN- mm)
sec

=2r =0.618sec

Table 2. Computation of wl.éf and f; J;

Level i w; fi 0; Wl-éiz [0
kN kN mm  kN-mm’ kN-mm
3 890  48.16 4.79 20,420 230.7
2 890 3333 3.84 13,124 128.0
1 890  18.51 2.23 4426 413
¥=37,970 ¥ =400.0

Approach B (using the dynamic analysis):

The following demonstrates the computation of the
fundamental period of the frame using the dynamic
analysis.

The equation of motion for free vibration of a
multiple-degree-of-freedom structural system is
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(K]~ @*[M]fv) =10}

where [K] = the stiffness matrix of the structural
system; [M] = the mass matrix of the structural sys-
tem; {v} = the displacement vector of the structural
system; and @ = angular frequency.

Referring to Fig. 1, the total combined stiffness of
the two columns in the 1% story is

5 8
o oo 2L, 122x10 )(8.931><10 D) _ s o
(4570)

= 44.8x10°N/m

The total combined stiffness of the two columns in
the 2" and 3" stories is

5 8
=k =2 12(2%10 )(5.136><10 ) SO/
(3660)

=50.5%10°N/m

The mass of the roof and the floors is

m; =m, = my _W =M= 90,700 kg
g 9.81m/sec
Therefore,
[K]-w?[M]
_kj +k, —k, m,
=|-k, k,+k, -k, |-& m,
L —k; k; m;
[95.3%10° =90,70000> —50.5%10°
=|-50.5%10° 101x10° —=90,700> —50.5x10°
~50.5x10° 50.5x10° — 90,700’

Setting the determinant equation to zero, that is,
det ([K |- w*[m ]): {0}, results in the 1% modal fre-
quency ;= 10.16 rad/sec, the 2" modal frequency
w,= 28.83 rad/sec, and the 3 modal frequency
w; = 42.28 rad/sec. The fundamental period, T, of
the frame can then be determined to be

T, =27 0618sec

2
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The above results show that the fundamental pe-
riod obtained from the dynamic analysis agrees with
that obtained from Egs. (3) and (4) for the three-
story frame with rigid beams as shown in Fig. 1.

3. GENERAL STIFFNESS MATRICES FOR
MOMENT FRAMES WITH FLEXURAL BEAMS

As shown in the previous example, using Eq. (3) in-
volves the computation of the horizontal displace-
ments of the frame under consideration. The com-
putation of the horizontal displacements for a
moment frame with flexural beams, however, is very
time consuming. A general stiffness matrix is there-
fore introduced in this paper in order to simplify the
computation of the horizontal displacements for
moment frames with flexural beams.

The general stiffness matrix of a three-story,
three-bay moment frame with fixed column bases as
shown in Fig. 3 can be constructed using the follow-
ing procedure:

Referring to Fig. 3, the basic slope deflection
equation for a beam i-j in the frame is

2FE, 1, .
ij :f(zei +0j)

[13+4]
1

where M, ; = the moment at the end “i” of the beam
i-j; Eij= the modulus of elasticity of the beam i-j; I;.;
= the moment of inertia of the beam i-j; L;; = the
length of the beam i-j; 6; = the rotation at the end “i”
of the beam i-j; and 6; = the rotation at the end “j”” of
the beam i-j.

P3 A =1 2 3
P, —— ! 8
hy
P BN L 10 11 i
hl" /77173 /7717'4 /77;5 /77;6
M l] . lz | l3

Figure 3. Laterally loaded three-story, three-bay frame

2F, i
——— one has the end moment

Setting k,_; =
i~j
equation, M, ; =k,_; (29; +6 j), at the end “i” of the
beam i-j. Also, referring to Fig. 3, the basic slope
deflection equation for a column i-j in the frame is

i—j

M, = —2EZJ'I"‘<" (26,+6,-3R,)

i~J
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where M;.;= the moment at the end “7” of the col-
umn i-j; E;; = the modulus of elasticity of the col-
umn i-j; /;; = the moment of inertia of the column i-
J; Li;j = the length of the column i-j; 0; = the rotation
at the end “i” of the column i-j; ; = the rotation at
the end “j” of the column i-j; and R, = A,/L;.;, where
Ay = the relative deflection between the ends of the
column i- in the x" story of the frame.

2E 1,

Setting k;_ i = , one has the end moment

i—j

equation, M, ; =k,_; (29i +0, —3Rx), at the end “7”
of the column i-;.

Since the summation of the end moments at each
joint equals zero, one has the following equation at
joint “1”

SMy, =M, ,+M, ; =k ,(20,+0,)

From which, the equation at joint “1” is

2(k1—2 + k1—5 )01 + k1—2 02 + k1—505 + 3k1—5 (_ R3 ) =0

Similarly, one has the following equations at joints
“2” through “12”

ZMJZ =0;
k.0, + 2(k1_2 thky 3tk 4 )92 +k,_36;

ZMJ3 =0;
ky 30, + 2(k2—3 +hk;_y+k;; )93 +k;_40,

ZMM =0;

kg0 +20ks_y +ky )0, + k05 +3k, (- R;)=0
ZMJ5 =0;

k;_s0, + 2(k5—5 +hki_st+ks_g )95 +ks_s0s +ks_g0,
+3k;_s (- R; )+ 3ks_g (- Rz) =0

zMjg =0;

k; 50, +ks 05 + 2(k5—6 ke rthky o+ k6—10)06 +ks_0;
+ks_1P10+ 3k (- Rs) + 3k6—10(_ Rz) =0

ZMJ7 =0;
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ks ;05 +kg_705 + 2(k6—7 +hky_gt+k; ;+ k7—11)‘97 +k;_s0s
+k;_1 0, +3k;_; (- R; )+ 3k7—11(_ Rz) =0

zMjg =0;
ky_s0,+k;_ 50, + 2(k7—8 +hygtks pn )98 +ks 1202
+3k,_g (— R; )+ 3kg_ 1, (- R, )=0

>M J9 =0;
ks_g0s + 2(k9-10 +ks_g+ k9—13)99 +ko_100;0
+3ks_g (- R, )+ 3k9—13(_ R, )=0

2M 0 =0;
ks_1005 +ko_ 1009 +2(k9—10 +kio-11tks_10 +k10—14)‘910
+ko1 011 +3k6—]0(_ R2)+3k1m14(— R]) =0

XM ;=03

k107 +kio1 010+ 2(’9041 ki tho gtk 1—15)911
+ky 0+ 3k7—11(— Rz) + 3k11—15(— R]) =0

XM, =0;
ks_120s +kjp120;; + 2(k11—12 +hkg 12tk g6 )‘912
+ 3k8—12(_ R, )+ 3k;5-16 (- R, )=0

Since the summation of the end moments of the
columns in the same story equals the total shear
forces in that story times the story height, one has
the following equations for the 3", 2" and 1% sto-
ries, respectively

M, s+Ms_ +M, +Mg ,+M; ,+M; ;+M,

Ms g+Mos+Mg_jg+Mpyo+M; ;, +M,; _;
+My , +M,, o =(P,+P;)h,, and

Mg _;3+M; g+Mpg_1y+My_ 19+ M s+ Ms_y,
M6+ Mig_pr = (PI +P, +P3)h1'

From the above equations one has

3k,_50, + 3k, 0, + 3k,_,0, + 3k, 40, + 3k,
+ 6(k1—5 thkygthk;,+kys ) R; )
= P;h;,
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+3ks_10010 +3k;_1,60;; +3ks_126),
+ 6(k5—9 +ks_jo+ks_p ks o )(- R, )
= (P2 + P )hz, and

3kg_;13605 +3k;p_1460 +3k; 1150, +3k15_ 1660,
+ 6(k9—13 +hioratkiistki s ) R, )
= (P] +P, "‘P3)h1-

The equations developed in Steps 2 and 3 shown
above are then summarized in the matrix format as
shown in Eq. (5). Note that Xk;; shown in Eq. (5)
represents the summation of the k values of the
members connected at the joint “i,” while Zkc,
represents the summation of the k values of the col-
umns in the x™ story.

4. EXAMPLES FOR THE COMPUTATION OF
THE FUNDAMENTAL PERIOD OF MOMENT
FRAMES WITH FLEXURAL BEAMS

The following examples demonstrate the computa-
tions of fundamental periods of moment frames with
flexural beams using two approaches; one is the pro-
posed approach (Eqgs. [3], [4], and [5]) and the other
one is the traditional dynamic analysis.

Example 1: Compute the fundamental period of
the steel moment frame shown in Fig. 4. The beam
and column sizes are shown in the figure. The bases
of the columns are fixed. The moment of inertia
about the x-axis is I, = 1.66 (109) mm* for the
W30x99 beam and is I, = 1.25 (10°) mm” for the
W14x233 columns. The modulus of elasticity is E =
2.00 (105) MPa for all members. The weight of the
roof = 267 kN (60 kips). The height and width of the
frame are 4.57 m and 8.53 m, respectively. Neglect
the shear and axial deformations for all members as
well as the weight of the columns.

Approach A (using Egs. [3] and [5]):
1. Assume the total design lateral force V = 10

kN. Since this is a one-story frame, the lateral force
induced at the roof level is 10 kN.
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2. Since the one-story, one-bay frame shown in
Fig. 4 is a partial structure of the three-story, three-
bay frame shown in Fig. 3, the frame shown in Fig.
4 can be extracted from the lower left corner of the
frame shown in Fig. 3. The four joints of the one-
story, one-bay frame therefore are assigned to be
joints “9”, “10”, “13”, and “14”, respectively, and
the height and width of the frame are assigned to be
“h;” and “I;”, respectively. Also, the lateral force
applied to the frame is “P;” as shown in Fig. 4.

The stiffness matrix equation (Eq. [6]) of the sin-
gle-story, single-bay moment frame, therefore, can
be formed directly from the general stiffness matrix
equation (Eq. [5]) of the three-story, three-bay mo-
ment frame using the following procedure:

Step 1: Draw three horizontal lines and three ver-
tical lines through 6y, 6,9, and —R;, respectively, on
Eq. (§) as shown in Fig. 5.

267 kN
9 W30x99

Py

v
=
(e}
—

on o
on o
™ S| hy=45Tm
3 3
= =
13 14
/777 /777

l] =8.53m

A

Figure 4. One-story, one-bay steel moment frame with a flex-
ural beam

0, 0, 0; 0, 05 65 0, 05 6

- Figure 5. Formation of the stiffness matrix equation for Example 1

Electronic Journal of Structural Engineering, 9 (2009)

Step 2: Utilize the stiffness items at the intersec-
tions of the lines shown in Fig. 5 to form the stiff-
ness matrix equation of the single-story, single-bay
frame shown below (note that P, = P; = O for a sin-
gle-story frame):

&, b0 —-R,
22 kyo koo 3ko sz | 6o 0 (6)
koig 22 ky0 3k || G0 |=| O
3ko 3 3kjg_py 62 ke |- R, P
2F. I. . _ _
Note that k, ; =———", as mentioned early in

-
this paper. The stiffness items shown in Eq. (6),
therefore, can be computed to be

zzkj 9 = z(k + k9—l3)

9-10

_ 2[2(2><108 )1.66x107) .\ 202x10° )(1.25><10‘3)}
8.53 4.57

=374,504kN - m

23k, = 2(ko 9 + ko 14) =374,504kN-m ,

6> ke =6lko ;5 +k;y ,4)=1,312,910kN-m, and

P/h, =10kN(4.57m) = 45.7kN - m

910 911 912 _R3 _RZ _RI

P3hs
(Ps+ P s
2 J L

’ ’]+P2 +P3)h]_
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Substituting the above values into Eq. (6), one has

374,504 77,843 328,227 6,
77,843 374,504 328,227 |(kN-m) 6

10

328,227 328,227 1,312,910 -R,
0

=| 0 |(kN-m)
45.7

The above matrix equation can be represented by
[K]{U}z {F}, where [K]: the stiffness matrix, {U}=
the displacement vector, and {F}= the force vector.

From {U}= [K]_l{F}, one has

R, =(-)5.46x107°
Therefore, the relative horizontal displacement
between the roof and the ground floor is

A, =R, xh, =(5.46x107 )4.57m)=0.25mm

3. From Eq. (3), the fundamental period of the
one-story, one-bay frame is

T = 27[\/W5 =27r\/w—5

gfé gf

(267)(0.25)kN- mm

sec’

=27 =0.164sec

Approach B (using the dynamic analysis):

The system shown in Fig. 4 has three degrees of
freedom; they are: one lateral displacement (U;) and
two joint rotations (U, and Uj3) as shown in Fig. 6.
The degrees of freedom caused by joint rotations can
be eliminated by using the static condensation
method [4] to simplify the dynamic analysis of the
moment frame. The following demonstrates the
computation of the fundamental period of the frame
shown in Fig. 4 using the static condensation
method.

1. The total stiffness matrix K is composed of
stiffness matrices Kgq, Kar, Kra, and K. and is de-
noted as

[
-
R
2 B
3 F
[

Electronic Journal of Structural Engineering, 9 (2009)

where kgq = the displacement stiffness of the col-
umns caused by the deflections of the columns; kg
= the displacement stiffness of the columns caused
by the rotations of the joints; kyq = the rotation stift-
ness of the joints caused by the deflections of the
columns; and k,, = the rotation stiffness of the joints
caused by the rotations of the joints.

The stiffness coefficients for joint translation and
joint rotation as shown in Fig. 7 can be used to de-
termine the value of each k;; presented in Fig. 8:

U2 U3
m—“—V U
C I], \/ !
IC Ic h1
Vcdd 7 ——
Iy

12EI
3
6121 £l
L l A=1
( I =L I
A ~ —
12E1 ‘|
—= | “6EI

(a) Stiffness coefficients for joint translation

6El
L2
2EI ( El 4ET
~ — L

L A — i/d-
=1 J
< L »

6EI

LZ

(b) Stiffness coefficients for joint rotation

Figure 7. Stiffness coefficients for joint translation and
ioint rotation
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Uy =1
k21 ks,
X
¢ St
/ /
/ /
/ 7
/ /
”7_
koo

(c) Setting U; = 1 to determine k3, ky3, and kj3;

Figure 8. Setting U; = 1 to determine k; for a single-
story, single-bay frame

Setting U; = 1 and U, = U; = 0 as shown in Fig.

8(a), one has

3

12E1
k, = 2[ ¢ j _ 62,8647

6EI
kar =gy == 5= =T1822kN

1

Setting U, = 1 and U; = U; = 0 as shown in Fig.

8(b), one has

_ 6EI,

k;, ~€=71,822kN
1
4EI, 4EI
ky, = l b+ "¢ =374,504kN-m
1 1

Electronic Journal of Structural Engineering, 9 (2009)

2EI,

ks, = =77,843kN-m

1

Setting U; = 1 and U; = U, = 0 as shown in Fig.
8(c), one has

6EI
kj3 =—5=71822kN
1
2EI
k,; =——2 =77,843kN-m
1
4EI, 4EI
ks = 1 b ¢ =374,504kN-m
1 1

The total stiffness matrix K, therefore, is

Kt ke ks
K= k21 E kzz k23
ks i ki ki

62,864 171,822 71,822

=|71,822 1374504 77,843 :{}
71,822 | 77,843 374,504 |

2. The condensed stiffness matrix K. can be ob-
tained from the following equation [4]

K. =kg _kjdk_lk @)

rord

Therefore, one has

KC
°- 771,822
- 62864 —[71822 71.822] 2700810 5.8008 x10
~5.8008x107 27908 x107° | 71,822
kN
=40,056 —
m

3. The static condensation matrix K. eliminated
the joint rotations, U, and U;. The three-degrees-of-
freedom system as shown in Fig. 6, therefore, has
been reduced to a single-degree-of-freedom system.
The natural period of the structural system, there-
fore, is

T=27r1/%=27r T 267kN oy = 0-164sec
: ?(40,056}
sec m
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The above results show that the fundamental pe-
riod obtained from the dynamic analysis agrees with
that obtained from Eqgs. (3) and (5) for the one-story,
one-bay moment frame with a flexural beam as
shown in Fig. 4.

Example 2: Compute the fundamental period of
the three-story, two-bay reinforced concrete moment
frame shown in Fig. 9. The exterior column size is
559 mm x 559 mm (22" x 22"), the interior column
size is 660 mm x 660 mm (26" x 26"), and the beam
size is 457 mm x 559 mm (18" x 22"). The
modulus of elasticity E = 2.48 (10*) MPa for all

members. The total weight of the roof is 801 kN
P3 ;1 2 3 7}
h; =3.66 m
P,—»3 6 T—%
h,=3.66 m
P, > 10 11 y
A ” 15 |I=45Tm
7777 7777 /77 -
411: 7.93 m ‘412 =7.93 m‘

Notes: Exterior columns: 559 mm x 559 mm
Interior columns: 660 mm x 660 mm
All beams: 457 mm x 559 mm

Figure 9. Three-story, two-bay reinforced concrete frame
with flexural beams

2. Compute the horizontal displacement of
each level of the frame. Considering the factors
(0.35 for beams and 0.7 for columns as specified in
Section 10.11.1 of ACI 318-05 [5]) for the computa-
tion of the moments of inertia of reinforced concrete
beams and columns, one has
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(180 kips) and the total weight of each floor is 934
kN (210 kips). Neglect the shear and axial deforma-
tions for all members as well as the weight of the
columns.

Approach A (using Eqgs. [3], [4], and [5]):

1.Compute the vertical distribution of seismic
forces. Assume the total design lateral force V = 100
kN. From Eq. (4) one has F; = 19.87 kN, F;, =
35.79 kN, and F; = 44.34 kN. Note that F; = the lat-
eral force induced at level i of the frame. Also note
that k =1 (k is a distribution exponent related to the
frame period) has been assumed in Eq. (4) as men-
tioned early in this paper.

3
I, = 0.354576%) _ 5 33, (10° Jmm*
559(559)’ o\ 4
1,=0722222) = 570%(10° Jmm
660(660)’ o\ 4
[, =072 —11.07%(10° Jmm

where [;, = the moment of inertia of the beams; /..
= the moment of inertia of the exterior columns; and
1.; = the moment of inertia of the interior columns.

Since the three-story, two-bay moment frame
shown in Fig. 9 is a partial structure of the three-
story, three-bay frame shown in Fig. 3, the stiffness
matrix equation of the three-story, two-bay moment
frame can be formed directly from the general stift-
ness matrix equation (Eq. [5]) of the three-story,
three-bay moment frame using the procedure shown
in the previous example (Example 1). Thus, from
Eq. (5) one has Eq. (8) as shown below:

2Ei—j1 i—j . .
Note that k,_ ;=————, as mentioned early in

this paper. Therefordsone has

23 ky o ki, ks 3k,_s 6,
ki 2%k, ko ks 3k, 6,
0/ 92 93 95 96 97 99 9] 0 9] 1 'R3 'RZ -R 1
ks ks.s  2X ki ks; ks_1o 3ky s 3ks_po 0
k?—7 k6—7 2y kJ7 k7—11 31‘5—7 3k7—11 97 _ (8)
ks_q 2%k Koy Sks_g kg3 | 6y
ks_10 ko_jo  2Xks0  kioop 3ks_10 3kjo_1a | 1o
ks ki1 2Xkyy 3k,_yr o 3kpgs | O
3kis  3kys ks, 3kis o 3k, 3ks, 6% ke; —R; Pshy
Sks_g  Sks_jo  3k;_y Sks.g kg9 3k 6% ke, R, (PI +Rf)h2
3ko_ys 3kig_yy 3kyys 62 ke | - R, ] 7(P1 +h +Pf)h17
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kI—Z = k2—3 = k5—6 = k6—7 = k9—]0 = k]()—]]
_ 2x2.48(107)x2.33(10°)

=14,574kN - m
7.93
k1—5 = k5—9 = k3—7 = k7‘“
7 -3
_ 2><2.48(10 )><5.70(10 ):77,246kN-m

3.66

_ 2x2.48(10")x5.70(107)

k, =k

9-13 11-15 4.57

= 61,864kN - m
2x2.48(107)x11.07(10)
k2—6 = k6—10 =
3.66
=150,020kN - m
7 -3

. 2><2.48(104)5><711.O7(10 )_ 120,147kN - m

The stiffness of each item presented in Eq. (8),
therefore, can be determined using the k;.; values de-
termined above. For example:

23k, =2(k,, +k,,)=183,640kN -m;
23k, =2k, , +k, , +k,,)=358336kN -m;

6> k., =6k, ,+k, ,+k, ,)=1827,072kN -m;
and

6> k., =6k, ,+k, , +k, )=1463250kN -m

Also, from Step 1 one has
P;h; =(44.34)(3.66) =162.28kN - m
(P, + P;)h, =(35.79 +44.34)(3.66) = 293.28kN - m

(P +P +P)h, =(19.87 +35.79 + 44.34)(4.57)
=457.00kN - m

Substituting the above values into Eq. (8), results in
R;=(-) 0.0010191;

R>=(-) 0.0013149; and

R; =(-) 0.0009165.
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The relative horizontal displacement between
each adjacent level of the frame, therefore, can be
computed to be:

A, =R, xh; =(0.0009165)(4.57m) = 4.19mm
A, =R, xh, =(0.0013149)(3.66m)= 4.8 Imm

A; = R; xh,; =(0.0010191)(3.66m) = 3.73mm

where A; = the relative horizontal displacement
between the 1* floor and the ground floor; A, = the
relative horizontal displacement between the o
floor and the 1% floor; and A; = the relative horizon-
tal displacement between the roof and the 2" floor.

Therefore, the total horizontal displacement at the
2" floor is 0, = A; + A2 = 9.00 mm. Also, the total
horizontal displacement at the roof (3™ level) is ;=
A] + Ag + A3 =12.73 mm.

3. Compute the fundamental period of the
frame. From the lateral forces determined in Step 1
and from the horizontal displacements determined in
Step 2, the fundamental period of the frame can be
determined using Eq. (3):

T= ZE\/(iwidzj+(gzn:ﬁ@j
i=1 i=1

_ [ (034kN)4.19mm)? + (934kN)9.00mm)* + (801kN)12.73mm)

=47
d 9810‘zmn[(19.87kN)(4. 19mm) + (35.79kN)(9.00mm) + (44.34kN)12.73mm)]
Sec

=0.959 sec

Approach B (using the dynamic analysis):

Since it is a long process to perform the dynamic
analysis of the three-story, two-bay frame, only the
results of the modal frequencies (obtained from the
dynamic analysis) of the frame are shown below:

The 1* modal frequency ,= 6.55 rad/sec, the
2" modal frequency w, = 24.62 rad/sec, and the 3
modal frequency w; = 54.46 rad/sec.

The fundamental period, 7, of the frame, there-
fore, is

2
T, =% =0959sec
@;
The above result shows that the fundamental pe-
riod obtained from the dynamic analysis agrees with

that obtained from the proposed approach (using
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Eqgs. [3], [4], and [5]) for the three-story, two-bay re-
inforced concrete moment frame shown in Fig. 9.

The approximate fundamental period of the three-
story, two-bay frame given in this example can be
determined using Eq. (1) (an approximate method
specified in the Equivalent Lateral Force Procedure,
ASCE/SEI 7-05):

T =Ch' =0.0466(11.89)" =0.433sec

The approximate fundamental period of the frame
can also be determined using Eq. (2) (the first
method [known as Method A] specified in the 1997
UBC Static Force Procedure):

T=C (h ) =0.0731(11.89)" = 0.468sec

The above results indicate that the approximate
fundamental period of the frame obtained either
from Eq. (1) or from Eq. (2) is quite different from
that (0.959 sec) obtained either from the dynamic
analysis or from the proposed hand-calculated static
approach (using Egs. [3], [4], and [5]).

4. RESULTS AND DISCUSSION

The results obtained from Example 2 in Section 4
reveal that the approximate fundamental periods ob-
tained using either Eq. (1) (an approximate method
specified in the Equivalent Lateral Force Procedure,
ASCE/SEI 7-05) or using Eq. (2) (Method A speci-
fied in the 1997 UBC Static Force Procedure), are
too rough to be used for the final design of a frame
and should be used during the preliminary design
stage only. Furthermore, the proposed hand-
calculated static approach (using Egs. [3], [4], and
[5]), can be considered as an accurate approach for
determining the fundamental period of the frame.

The hand-calculated static approach, therefore, is
proposed herein to be used along with the Equiva-
lent Lateral Force Procedure (specified in the
ASCE/SEI 7-05) to perform both the preliminary
design and final design of low-rise moment frames.
The proposed approach is especially recommended
for the design of reinforced concrete moment frames
for the following reasons:

Once the beam and column sizes of a reinforced
concrete structure have been determined by an archi-
tect, they usually remain unchanged during the
structural design process. Therefore, once the stiff-
ness matrix (which can be formed directly from the
general stiffness matrix shown in Eq. [5]) is con-
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structed for the preliminary design of a frame, it usu-
ally can be reused for the final design of the frame.

The computation of the moments of inertia of re-
inforced concrete beams and columns shown in Ex-
ample 2 in Section 4 demonstrates that the proposed
hand-calculated approach is able to take the effects
of cracked sections of reinforced concrete elements
into consideration for the computation of story drifts
as specified in Section 12.7.3 of the ASCE/SEI 7-
05.

5. SUMMARY AND CONCLUSIONS

Although the Equivalent Lateral Force Procedure as
specified in the ASCE/SEI 7-05 and the Static Force
Procedure as specified in the 1997 UBC each have
an approximate method to be used for determining
the fundamental periods of moment frames, the ap-
proximate fundamental periods derived from these
two procedures are usually too rough to be used for
the final design of the frames. Accurate fundamental
periods of moment frames are traditionally obtained
using the dynamic analysis, which usually requires
the use of computer software.

A hand-calculated static approach, therefore, is
proposed in this paper to serve as a convenient tool
that can be used along with the ASCE/SEI 7-05
Equivalent Lateral Force Procedure to perform both
the preliminary design and the final design of low-
rise moment frames. Examples presented in this pa-
per have proved that the fundamental periods ob-
tained from the proposed hand-calculated static ap-
proach agree with that obtained from the dynamic
analysis. The proposed hand-calculated approach,
therefore, can be considered as an accurate approach
for determining the fundamental periods of moment
frames.

The following are the advantages of using the
proposed approach to design a moment frame: (1)
the proposed approach can be carried out by using
hand calculations only (without the use of computer
computations); (2) once the fundamental period of a
frame is determined (using the proposed procedure
and an assumed seismic base shear), it can be used
to determine the actual seismic base shear. The ac-
tual vertical distribution of seismic forces, the story
drifts, and joint rotations of the frame in turn can be
determined using Eqgs. (4) and (5).; (3) once the ac-
tual story drifts and joint rotations of a frame are de-
termined, the final bending moment at the ends of
each element of the frame can then be determined
using the basic slope deflection equations discussed
earlier in this paper.; (4) the proposed approach is
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able to take the effects of cracked sections of rein-
forced concrete elements into consideration for the
computation of story drifts as specified in Section
12.7.3 of the ASCE/SEI 7-05; (5) the stiffness ma-
trix of any moment frame within three stories in
height and within three bays in width can be formed
directly from the general stiffness matrix presented
in this paper; and (6) the fundamental period of the
frame obtained from the proposed hand-calculated
static approach can be used to verify the accuracy of
that obtained from the dynamic analysis using com-
puter software.

The following are the limitations of the proposed
approach presented in this paper: (1) the frame to be
designed is limited to three stories in height and
three bays in width; and (2) the columns in the same
story shall have the same height and the beams in
the same bay shall have the same length.
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NOTATION

C, = numerical coefficient;

E;; = modulus of elasticity of the beam (or column) i-j;

fi = lateral force at level i;

F, = lateral force induced at level x of the frame;

{F} = force vector;

g = acceleration due to gravity;

h;, h, = height from the base to level i or x, respectively;

h, = height above the base to the highest level of the struc-
ture;

I, = moment of inertia of the beams;

I., = moment of inertia of the exterior columns;

I, = moment of inertia of the interior columns;

I;; = moment of inertia of the beam (or column) i-j;

I, = moment of inertia about the x-axis;

K = total stiffness matrix

K] = stiffness matrix of the structural system;

k = distribution exponent related to the frame period;

K. = condensed stiffness matrix;
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kqa = displacement stiffness of the columns caused by the
deflections of the columns;

kg = displacement stiffness of the columns caused by the
rotations of the joints;

k.q = rotation stiffness of the joints caused by the deflections
of the columns;

k.. = rotation stiffness of the joints caused by the rotations
of the joints;

L.;= length of the beam (or column) i-j;

M;; = moment at the end “/” of the beam (or column) i-;

M] = mass matrix of the structural system;

T = fundamental period;

T, = approximate fundamental period;

{aU} =  displacement vector;

V= total design lateral force or shear at the base of the

frame;

{v} = displacement vector of the structural system;

w; = portion of the total seismic dead load located at or as-
signed to level i; portion of the total gravity load of the
structure assigned to level i;

w, = portion of the total gravity load of the structure as-
signed to level x;

A = relative horizontal displacement between each adja-
cent level of a frame;

A, = relative deflection between the ends of a column in the
x" story of the frame;

0; = horizontal displacement at level i relative to the base
due to applied lateral forces;

0; = rotation at the end of the beam (or column) i-j;

0; = rotation at the end 5 of the beam (or column) i-j; and

@ = angular frequency.
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