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1 INTRODUCTION 
 
The adoption of supplemental damping elements in 
civil structures has been introduced in the relatively 
recent past as an innovative technology for reducing 
the level of vibration, which is usually related to 
wind and earthquake actions. Because of the non-
proportional damping characteristic of the combined 
structure-damper system, the decoupled seismic 
analysis can not be performed by the undamped real-
valued modal matrix. Alternatively, the structure-
damper system can be analyzed directly by consider-
ing the combined system as a single dynamic unit, 
by determining the complex eigenproperties of the 
combined system via state-space approach firstly 
proposed by Foss (1958), and then by employing a 
modal analysis. However, the calculation of complex 
eigenvalues problem is cumbersome and time-
consuming, and thus attempts to overcome the com-
putational difficulties of the approach have been car-
ried out by Lou et al. (2003), Karen et al. (2005), 
Fernando et al. (2006). Besides, it may sometimes be 
necessary to consider a number of design alterna-
tives of the damping system and then, such an analy-
sis would involve the evaluation of the dynamic 
properties of the combined structure-damper system 
several times. In order to avoid a great deal of re-
peated calculation of the complex eigenvalue prob- 

 
lems, several measures have been studied. Based on 
the pseudo force method studied by Claret et al. 
(1991), Lin et al. (2003), an iterative procedure for 
computing the transfer function matrix of a non-
classically damped system has been developed  by 
Jandid et al. (1993), Zavoni et al. (2006). The itera-
tive methods have more advantages than the com-
plex modal superposition methods in terms of speed, 
and it retains the advantages of the real-valued mo-
dal superposition methods. 

This paper presents a new stochastic method for 
the seismic analysis of combined structure-damper 
system. The pseudo excitation method proposed by 
Lin (1992) is introduced for its high computation ef-
ficiency. Besides, based on the perturbation tech-
niques, the inverse operation of matrices in the 
pseudo excitation method for non-proportionally 
damped system is avoided. Meanwhile, the stochas-
tic response analysis of the combined structure-
damper system is free of the determination of com-
plex eigenvalues and eigenvectors, and the matrix of 
power spectral density (PSD) function is expressed 
in a matrix sequence form. In the end, numerical 
comparisons with exact results are carried out to ex-
amine the accuracy of the proposed method. The re-
sults prove the accuracy of the new approach.   
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2 EQUATIONS OF MOTION 

Consider an n-degree-of-freedom discrete structure 
subjected to base acceleration ( )gu t&& . Attached to this 
structure is the damping system consisting of m 
dampers. The equations of motion for the combined 
structure-damper system can be written as follows: 

( ) ( ) ( )d d gu t+ + + + = −MU C C U K K U ME&& & &&    (1) 

where, M, C and K are the mass, damping and stiff-
ness matrices of the structure, respectively. 
U=[u1,…,un] is the relative displacement vector of 
the structure with respect to the base. A dot over U 
represents a derivative with respect to time. E means 
the conventional influence vector representing rigid-
body displacements of the structure for a unit trans-
lation of the base. Cd and Kd denote the additional 
damping and stiffness matrices provided by the 
damping system, which can be obtained by assem-
bling the damping and stiffness coefficients of m 
dampers. Suppose that the force of the damper is 
proportional to the relative motion between the sup-
porting points, cdi and kdi are the damping and stiff-
ness coefficients of the ith damper respectively, the 
force can be obtained by: 

,1 ,1

,2 ,2

di di di di di

di didi di di di

di didi di di di

di

v vc c k k

v vc c k k

= +

− −      
= +      − −      

f C

f

V K V&

&

&

   (2) 

in which, Cdi and Kdi are the damping and stiffness 
matrices of the ith damper, Vdi is the displacement 
vector of the ith damper’s supporting points in the 
local coordinate system, and vdi,1 and vdi,2 correspond 
to the component coordinates of Vdi. A transforma-
tion matrix can be easily constructed to relate Vdi to 
U. Denoting this transformation matrix by Zdi, the 
following equation is obtained as: 

di di
=V Z U                 (3) 

Substituting the above expression in equation (2), 
and then pre-multiplied by the transpose of Zdi, 
yielding: 

T T T

di di di di di di di di
= +Z f Z C Z U Z K Z U&        (4) 

in which, the superscript T indicates the transpose 
operation. The equations of motion of the damping 
system can then be obtained by the summation of 
equation (4), leading to  

1 1 1

m m m
T T T

di di di di di di di di

i i i= = =

= +∑ ∑ ∑Z f Z C Z U Z K Z U&    (5) 

Comparing equations (1)-(5) leads to the follow-
ing relationships: 

1
i i i

m
T

d d d d

i=

=∑C Z C Z            (6a) 

1
i i i

m
T

d d d d

i=

=∑K Z K Z            (6b) 

Equations (6a) and (6b) complete the process of 
combining the property matrices of the dampers into 
property matrices of structure-damper system. 

3 FORMULATION OF PERTURBATION 
EQUATIONS 

Let Ф=[φ1,…,φn] denote the normalized modal ma-
trix of the structure, which is defined by:  

T T=Φ MΦΩ Φ KΦ              (7) 

in which the matrix Ω is the diagonal matrix list-
ing the natural radian frequencies of the structure. 
For large structure cases, the first few modes are de-
fined as : 

1 2[ , , , ],
qq n qn n= <<Φ φ φ φL         (8) 

where nq<<n is the number of modes obtained up 
to cutoff frequency. 

In order to decouple equation (1), the following 
transformation is usually adopted: 

q=U Φ q                (9) 

where, q qn n
R

×
∈q  is the vector of generalized coor-

dinates. Thus, we can write the differential equations 
of motion in the modal subspace as follows: 

* * ( )T

q gu t+ + = −Iq C q K q Φ ME&& & &&      (10) 

where, q qn n
R

×
∈I  is the identity matrix. * q qn n

R
×

∈C  
and * q qn n

R
×

∈K  are generalized damping and stiffness 
matrices which can be written as follows: 

*

1 1
diag[2 , ,2 ]

q q

T

n n q d q
ω ζ ω ζ= +C Φ C ΦL  (11a) 

* 2 2

1
diag[ , , ]

q

T

n q d q
ω ω= +K Φ K ΦL       (11a) 

where, diag[ ] denotes a diagonal matrix with ele-
ments in the argument; ωi and ζi are the frequency 
and damping ratio for the ith mode of the structure.  

Matrices *C  and *K  can be separated as follows: 

* *,= + = +C C C K K K% %           (12) 

where, C  and K  are the diagonal matrices con-
taining the main diagonal elements of *C  and *K . 
Matrices C%  and K%  contains all of the elements out-
side the main diagonal of *C  and *K . The elements 
in the main diagonal of matrices C%  and K%  are zero. 

Generally, it can be considered that C%  and K%  are 
little perturbation quantities with respect to the di-
agonal matrices C  and K , and a parameter ε  is in-
troduced to keep track of the orders of different 
quantities involved in the derivation. Accordingly, 
the damping and stiffness matrices corresponding to 
the dampers can be written: 
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ε=C ∆C% , ε=K ∆K%           (13) 

Then, the generalized ordinates can be expressed 
in terms of the perturbation parameter ε: 

( ) (0) (1) 2 (2) 3 (3)

0

j j

j

ε ε ε ε
∞

=

= = + + + +∑q q q q q q L  (14) 

Thus, equation (10) can be given in a general 
form based on the perturbation techniques:  

( ) ( ) ( ) ( )j j j j+ + =Iq Cq Kq F&& &
       (15a) 

(0) ( )T

q gu t= −F Φ ME&&          (15b) 

( 1) ( ) ( )j j j+ = − −F ∆Cq ∆Kq& , 0,1,2,j = L  (15c) 

In equation (15), the coupling term is eliminated 
based on the real-valued modal superposition 
method and the perturbation techniques. Then, the 
displacement of the structure can be easily obtained 
according to equations (9) and (14)： 

( )

0

j j

q q

j

ε
∞

=

= = ∑U Φ q Φ q           (16) 

4 STOCHASTIC RESPONSE ANALYSIS 

The input of ground motion is considered to be a 
zero mean Gaussian process, and the power spectral 
density (PSD) function are denoted as 

guS
&&

. Because 
of the computational complexity of traditional ran-
dom vibration theory, the pseudo excitation method 
is adopted. The ground motion is assumed to be a 
pseudo harmonic excitation:  

( ) , 1
g

r t

g u
u t S e r

ω= = −
&&

&&         (17) 

Define:  

1diag[ , , ]
qq nh h=H L           (18a) 

( )
1

2 2 2 , 1,2, ,i i i i qh r i nω ω ς ω ω
−

= − + = L   (18b) 

where, 2

i
ω  and 2

i i
ς ω  correspond to the diagonal ele-

ments of the matrices K  and C . 
For the 0th order perturbation solution of equa-

tion (15) one can take  

(0) (0) r te ω
ω=q q             (19a) 

(0) (0)

qω ω=q H γ             (19b) 

(0)

g

T

q u
Sω = −γ Φ ME
&&

        (19c) 

Then, for the jth (j=1,2,…,s) order solution of 
equation (15) it will have 

( ) ( )j j r te ω
ω=q q             (20a) 

( ) ( )j j

qω ω=q H γ             (20b) 

( ) ( 1)( )j jrω ωω −= − +γ ∆C ∆K q       (20c) 

Using the pseudo response of structure in equa-
tion (19) and equation (20), the generalized coordi-
nate vector of jth order (j=1,2,…,s) can be obtained. 
Accordingly, q and U are given by equations (14) 
and (16). The calculation stops While the following 
condition is satisfied in each frequency: 

( )

( )

0

s s

s
j j

j

Err Tol
ω

ω

ε

ε
=

= <

∑

q

q

           (21) 

where Tol is the tolerant limit for stopping the itera-
tion, which can be specified according to practical 
engineering. Then, the displacement PSD of the 
structure can be obtained by: 

* T=
U

S U U               (22) 

where, the superscript * indicates the complex con-
jugate. 

The diagonal elements of PSD matrix SU corre-
spond to auto-PSD of displacements of all degree of 
freedom of the structure. By using SU(k,k) to denote 
the PSD of the kth degree of freedom displacement 
of the structure, the variance can be given by the in-
tegration over frequency domain: 

2 ( , )
k

k k dσ ω
∞

−∞
= ∫U U

S           (23) 

Before closing this section, it is useful to general-
ize equation (22) for response quantities other than 
nodal displacement. It is well known that a dis-
placement-related response quantity z(t) such as an 
internal force or stress, can be expressed in terms of 
the vector of nodal relative displacement, U 

( )z t = ΓU               (24) 

where, Γ is an vector of constants. For the internal 
force in a member, for example, Γ is given in terms 
of the elements of the stiffness matrix of the mem-
ber. Thus, the PSD of the response quantity z(t) can 
be calculated from: 

* *( ) ( )T T T T

z
S S= = =

U
ΓU ΓU ΓU U Γ Γ Γ   (25) 

5 GENERAL METHOD FOR STRUCTURE-
DAMPER SYSTEM 

Utilizing the pseudo excitation method, many ap-
proaches have been proposed for the stochastic re-
sponse analysis of non-proportionally damped sys-
tem. The complex mode superposition method has 
been introduced in the pseudo excitation method by 
Xu et al. (2001), Wang (2008), which is similar to 
the real-valued mode but more applicable. However, 
it may require a lot of repeated calculation of com-
plex eigenvalue problems for the structure-damper 
system, which is inefficient in computation. 
Thereby, Lin proposed a seismic analysis approach 
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of non-proportionally damped system [12]，which 
can avoid the repeated calculation of complex eigen-
values and eigenvectors. However, it needs plenty of 
inverse operation of matrices, which would lead to 
computation difficulties in practical calculation es-
pecially for ill-conditioned matrices. According to 
the approach, the pseudo generalized coordinate vec-
tor of the system is assumed to be written as follows: 

( ) , 1
r t

real imagr e r
ω= + = −q q q       (26) 

where, the subscripts real and imag represent the real 
part and imaginary part of the complex vector q, re-
spectively. The equation (10) can be expressed as： 

real imag real+ =Pq Qq F          (27a) 

real imag imag− + =Qq Pq F         (27b) 

where,  

* 2 *,ω ω= − = −P K I Q C        (28a) 

imag
, 0

g

T

real q u
S= − =F Φ ME F
&&

    (28b) 

Utilizing equations (27) and (28), the generalized 
coordinate vector q can be obtained. 

1 1 1 1 1
( ) ( )

real imag

real real

r

r
− − − − −

= +

= + + +

q q q

P QP Q F P Q P QP Q Fq
  (29) 

Then, the pseudo displacement vector U of the 
structure is produced by equation (9), and accord-
ingly the power spectral density function matrix of 
the structural displacement is given by equation (22). 
The method is efficient in computation approxi-
mately requiring O(n

2
) operations. However, the in-

verse operation in equation (29) may lead to compu-
tation difficulties. From this point, the new method 
proposed in this paper is more applicable by using 
the perturbation equations instead of the matrix in-
verse operations. 

6 COMPUTATION COST 

In large structures, the number of the reserved modes 
nq is far less than the number of degrees of freedom 
n, so the calculation related to the number nq is little 
enough to be neglected. Meanwhile, the cost inde-
pendent of the frequency calculation can also be ig-
nored in the stochastic analysis. Table 1 lists the 
main calculation flow chart and the detailed cost of 
the new method, in which Niter and Nfreq denotes the 
iterative times and the number of frequency points of 
the PSD respectively. The detailed cost of the new 
method is n

2
Nfreq, that is the computation efficiency 

of the new improved method is approximately the 
same with the method proposed by Lin [10]. At the 

same time, the inverse operations of matrices are 
avoided. 

 
Table 1 The calculation flow chart and detailed cost of  

the new method for stochastic analysis of structure-damper system 

Step Task Cost 

1 
(0) T

q= −γ Φ ME  qnn  

for 1: freqN  

2 
(0) (0)

gu
Sω =γ γ
&&

 freqN  

3 
(0) (0)

qω ωγ=q H  q freqn N  

for i
1:

ter
N  

4.1 
( ) ( 1)

( )
j j

rω ωω −= − +γ ∆C ∆K q  
2

iq ter freqn N N  

4.2 
( ) ( )j j

qω ω=q H γ  iq ter freqn N N  

end 

5 
( )

0

iterN

j j

q

j

ε
=

= ∑U Φ q  q freqnn N  

6 
* T=US U U  

2

freqn N  

end 

Main cost     
2

freqn N  

 

7 NUMERICAL EXAMPLES 

Numerical results are presented to demonstrate the 
accuracy of the new method. As shown in Figure 1, a 
20-storey structure with distributed added dampers is 
used as numerical example for testing the new 
method. All of the storeys have mass equal to 2×10

6
 

kg and lateral stiffness equal to 5×10
6 

kN/m. The 
Rayleigh damping is adopted, and a 5% damping ra-
tio is considered for 1st and 5th mode of the struc-
ture. The modal properties of the structure are listed 
in Table 2. The first 6 modes are selected for the 
seismic analysis. In the structure, the viscous damp-
ers are selected for the vibration reduction, and the 
corresponding configurations and positions of the 
viscous damper are given in Table 3. 

The stochastic model of ground motion, the Ka-
nai-Tajimi model, is adopted here, which can be de-
scribed as: 

4 2

02 2 2 2

(2 )

( ) (2 )g

g g g

u

g g g

S S
ω ζ ω ω

ω ω ζ ω ω

+
=

− +
&&

      (30) 

in which, ωg=13.96 rad/s, ζg=0.72, which correspond 
to the site type 1 and classification of the earthquake 
3 as been defined in GB50011-2001 of the code in 
china. The seismic intensity is assumed to be 
S0=0.06. 
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The accuracy of the proposed method is exam-
ined, and the perturbation results of the displacement 
variances of the 1st, 10th and 20th floors are shown 
in Table 4. The solutions corresponding to different 
perturbation order are listed in order to explain the 
trend the approximate solution to the exact solution. 
In the all examined cases, the proposed method 
shows excellent agreement with the exact results 
calculated based on the general method proposed by 
Lin (2004).  

The results prove the accuracy of the proposed 
method. Meanwhile, it can also be seen only a few 
order of perturbation is required for the given 
examples. However, it also should be mentioned is 
that the perturbation process may be unshrinking for 
large non-proportional damping cases, in which the 
proposed method based on perturbation equation is 
invalidated.

 

 

Table 2 Modal properties of the structure 

Mode 1 2 3 4 5 6 7 8 9 10 

Frequency (HZ) 0.61 1.83 3.03 4.22 5.38 6.51 7.60 8.65 9.65 10.59 

Damping ratio 0.05 0.03 0.03 0.04 0.05 0.06 0.07 0.08 0.08 0.09 

Sum of mass ratio 0.83 0.92 0.95 0.97 0.98 0.98 0.99 0.99 0.99 0.99 

Table 3 Configurations of damping coefficients of the viscous dampers in the structure (× 105 kN·s/m) 

Configuration Ground-Floor 1 Floor 1-2 Floor 2-3 Floor 10-11 Floor 11-12 Floor 12-13 

1 4.0 4.0 4.0 2.0 2.0 2.0 

2 6.0 6.0 6.0 2.0 2.0 2.0 

3 8.0 8.0 8.0 4.0 4.0 4.0 

4 10.0 10.0 10.0 4.0 4.0 4.0 

        
 

Table 4 Perturbation results of the displacement variances of the 1st, 10th and 20th floors of the structure 

Perturbation times  
Configuration Floor 

Exact 
results 1 2 3 4 5 6 7 8 

Error % 

1 0.59 0.61 0.60 0.58 0.60 0.60 ―  ―  ―  1.7 

10 5.40 5.37 5.35 5.38 5.41 5.40 5.40 ―  ―  0.6 1 

20 7.81 7.71 7.72 7.79 7.83 7.81 7.81 ―  ―  0.0 

1 0.53 0.55 0.54 0.54 ―  ―  ―  ―  ―  1.9 

10 4.95 4.87 4.84 4.90 4.98 4.94 4.94 ―  ―  0.2 2 

20 7.22 6.98 7.01 7.17 7.27 7.21 7.22 7.22 ―  0.0 

1 0.47 0.48 0.48 ―  ―  ―  ―  ―  ―  2.1 

10 4.51 4.36 4.33 4.45 4.57 4.48 4.51 4.51 ―  0.0 3 

20 6.57 6.22 6.26 6.52 6.65 6.54 6.59 6.58 6.58 0.2 

1 0.43 0.43 0.42 0.42 ―  ―  ―  ―  ―  2.3 

10 4.29 4.08 4.03 4.21 4.40 4.24 4.30 4.30 ―  0.2 4 

20 6.33 5.81 5.86 6.26 6.46 6.25 6.37 6.34 6.34 0.2 
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8 CONCLUSIONS 

A new stochastic method for seismic analysis of 
structure-damper system has been presented. The ac-
curacy and validity of the proposed approach are 
proven both mathematically and numerically and the 
results show excellent agreement with the exact re-
sults. In contrast to other methods found in the litera-
ture, the two main advantages of the new method 
are: 

 
1: The determination of complex eigenvalues and 

eigenvetors of non-proportionally damped system is 
avoided, by which the computation efficiency can be 
dramatically improved, especially for the structure-
damper system which requires repeated calculation 
of eigenvalue problems. 

2: The inverse operation of the matrices, which 
may lead to computation difficulties for ill condi-
tioned matrices, is avoided based on the perturbation 
techniques. Meanwhile, no additional computation 
cost is introduced. The new method is efficient and 
accurate for stochastic analysis of seismic response 
of structure-damper system. 
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