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1 INTRODUCTION 
The structural reliability problem consists in deter-
mining the probability that a structure exceeds a 
threshold limit, defined by a limit state/performance 
function influenced of several random parameters. 
Symbolically, the reliability problem can be stated 
as, 

( )( ) ( )
( ) 0

0F

g

P P g p d

≤

≡ ≤ = ⌠
⌡ X

x

x x x , (1) 

where { }1 2, , , Nx x x=x L  represents the N−dimens-
ional random variables of the model under consid-
eration; ( )g x  is the limit state/performance func-
tion, such that ( ) 0g ≤x  represents the failure do-
main; and ( )p

X
x  is the joint probability density 

function of the input random variables. 
Two class of approaches are commonly available for 
estimating the failure probability FP , which can be 
labeled as gradient-based and simulation-based 
methods. In the first case there is a need of estimat-
ing the gradient of the limit state/performance func-
tion in a relevant point around which the largest con-
centration of the probability mass in the failure 
region can be found. These methods are popularly 
called as first- or second-order reliability method 
(FORM/SORM). A crucial point in their application 
is the need of knowing the limit state function ex-
plicitly. But, in reality, the limit state/performance 
functions are implicit nature and highly nonlinear. 
Therefore, a detailed finite element (FE) modeling of 

the structure is necessary in combination with reli-
ability analysis tools. FE methods for linear and 
nonlinear structures in conjunction with 
FORM/SORM have been successfully applied for 
structural reliability computations. But, such meth-
ods are effective in evaluating very small probabili-
ties of failure for small-scale problems. In regard to 
the large-scale problems, merging of FORM/SORM, 
with commercial FE programs is not straightforward 
especially when the nonlinear problems are ad-
dressed. 
In contrast to the gradient-based methods, simula-
tion-based methods hinge upon the creation of gen-
erating synthetic set of basic random variables sam-
ples and simulating the actual limit 
state/performance function repeated times. The ma-
jor disadvantages of the Monte Carlo simulation 
(MCS) are that the results are of a statistical value 
and the random sampling error will produce inaccu-
racy within the results. The importance sampling 
technique, a commonly used variance reduction 
technique, requires an appropriate importance sam-
pling function in order to take full advantage of this 
method. As an alternative, simulation techniques 
have been combined with the response surface 
method in order to reduce the number of simula-
tions, in such a way that the response surface acts as 
a surrogate to the finite element solver for obtaining 
most of the samples. 
Wu and Torng (1990) used a quadratic approxima-
tion of the limit state/performance function at the 
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most probable point (MPP) and adopted fast Fourier 
transform (FFT) to estimate the failure probability. 
This method can produce accurate results for some 
problems but since the failure probability calculation 
is entirely dependent on the approximation at the 
MPP, higher order function approximation methods 
would be a better choice compared to a quadratic 
approximation. The essence of FFT based probabil-
ity analysis was demonstrated by Sakamoto et al. 
(1997). In order to use FFT, the limit 
state/performance function must be separable. 
Therefore, Sakamoto et al., (1997) adopted the re-
sponse surface concept to get separable and closed 
form expression of the implicit limit 
state/performance function.  Penmetsa and Grandhi 
(2003), and Adduri and Penmetsa (2007) imple-
mented two-point adaptive nonlinear approximation 
(Wang, and Grandhi, 1995) to construct the ap-
proximate limit state/performance function and used 
FFT technique to estimate the failure probability. 
Present effort is based on (1) HDMR approximation 
of the original implicit limit state/performance func-
tion and (2) the convolution theorem to estimate the 
structural failure probability. The proposed method 
estimates the joint probability density of the ap-
proximate limit state/performance function using 
FFT technique and the failure probability can be es-
timated by integration over failure domain. Com-
parisons have been made with conventional ap-
proximate methods (FORM/SORM) and direct MCS 
method to evaluate the accuracy and the computa-
tional efficiency of the present method.  

2 CONCEPT OF HDMR AND ITS USEFULNESS 
FOR FAILURE PROBABILITY ESTIMATION 

 
In recent years there have been efforts to develop ef-
ficient methods to approximate multivariate func-
tions in such a way that the component functions of 
the approximation are ordered starting from a con-
stant and gradually approaching to multivariance as 
we proceed along the terms like first-order, second-
order and so on. One such method is high dimen-
sional model representation (HDMR) (Rabitz et al., 
1999). HDMR is a general set of quantitative model 
assessment and analysis tools for capturing the high-
dimensional relationships between sets of input and 
output model variables. It is a very efficient formula-
tion of the system response, if higher order variable 
correlations are weak, allowing the physical model 
to be captured by the first few lower order terms. 
Practically for most well-defined physical systems, 
only relatively low order correlations of the input 
variables are expected to have a significant effect on 
the overall response. HDMR expansion utilizes this 

property to present an accurate hierarchical represen-
tation of the physical system. 
Degree of accuracy of structural reliability estima-
tion depends on the accurate representation of the 
limit state/performance function. Computational 
complexity for the generation of response surface 
arises due to increase in number of input variables, 
while using conventional response surface in con-
junction with design of experiments. The concept of 
HDMR expansions is introduced here for the pur-
pose of representing the response function most ac-
curately and efficiently, when the number of input 
variables is large. 
Let the N−dimensional vector { }1 2, , , Nx x x=x K , 
represent the input variables of the model under con-
sideration, and the response variable as ( )g x . Since 
the influence of the input variables on the response 
variable can be independent and/or cooperative, 
HDMR expresses the response ( )g x  as a hierarchi-
cal correlated function expansion in terms of the in-
put variables as, 

( ) ( ) ( )

( )

( )

1 2 1 2

1 2

1 2 1 2

1

0

1 1

1

12... 1 2

,

        , , ,

        , , ,

l l

l

N

i i i i i i

i i i N

i i i i i i

i i N

N N

g g g x g x x

g x x x

g x x x

= ≤ < ≤

≤ < < ≤

= + + +

+ +

+

∑ ∑

∑

x

K

K

K

K K

K

, (2) 

where 
0g  is a constant term representing the zeroth-

order component function or the mean response of 

( )g x . The function ( )i ig x  is a first-order term ex-
pressing the effect of variable xi acting alone, al-
though generally nonlinearly, upon the output ( )g x . 
The function ( )

1 2 1 2
,

i i i i
g x x  is a second-order term 

which describes the cooperative effects of the vari-
ables 

1i
x and 

2i
x upon the output ( )g x . The higher 

order terms gives the cooperative effects of increas-
ing numbers of input variables acting together to in-
fluence the output ( )g x . The last term 

( )12 1 2, , ,N Ng x x x
L

L  contains any residual depend-
ence of all the input variables locked together in a 
cooperative way to influence the output ( )g x . Once 
all the relevant component functions in Equation 2 
are determined and suitably represented, then the 
component functions constitute HDMR, thereby re-
placing the original computationally expensive 
method of calculating ( )g x  by the computationally 
efficient model. Usually the higher order terms in 
Equation 2 are negligible such that HDMR with only 
low order correlations to second-order (Li et al., 
2001), amongst the input variables are typically ade-
quate in describing the output behavior. Therefore it 
is expected that HDMR expansion converges very 
rapidly. 
Depending on the method adopted to determine the 
component functions in Equation 2 there are two 
particular HDMR expansions: ANOVA-HDMR and 
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cut-HDMR. ANOVA-HDMR is useful for measur-
ing the contributions of the variance of individual 
component functions to the overall variance of the 
output. On the other hand, cut-HDMR expansion is 
an exact representation of the output ( )g x  in the 
hyperplane passing through a reference point in the 
variable space. 
With cut-HDMR method, first a reference point 

{ }1 2, , , Nc c c=c L  is defined in the variable space. In 
the convergence limit, cut-HDMR is invariant to the 
choice of reference point c . In practice, c  is chosen 
within the neighborhood of interest in the input 
space. The expansion functions are determined by 
evaluating the input-output responses of the system 
relative to the defined reference point c  along asso-
ciated lines, surfaces, subvolumes, etc. (i.e. cuts) in 
the input variable space. This process reduces to the 
following relationship for the component functions 
in Equation 2 

( )0g g= c , (3) 

( ) ( ) 0
, i

i i i
g x g x g= −c , (4) 

( ) ( ) ( ) ( )1 2

1 2 1 2 1 2 1 1 2 2

0

, , ,

                  

i i

i i i i i i i i i ig x x g x x g x g x

g

= − −

−

c
, (5) 

where the notation 

( ) ( )1 2 1 1
, , , , , , , ,i

i i i i N
g x g c c c x c c− +=c K K  denotes 
that all the input variables are at their reference point 
values except

 ix . The 0g  term is the output response 
of the system evaluated at the reference point c . The 
higher order terms are evaluated as cuts in the input 
variable space through the reference point. There-
fore, each first-order term ( )i ig x  is evaluated along 
its variable axis through the reference point. Each 
second-order term ( )

1 2 1 2
,

i i i i
g x x  is evaluated in a 

plane defined by the binary set of input variables 

1 2
,i ix x  through the reference point, etc. The process 

of subtracting off the lower order expansion func-
tions removes their dependence to assure a unique 
contribution from the new expansion function. 

Considering terms up to first-order in Equation 2 

yields, respectively 

( ) ( )0 2

1

N

i i

i

g g g x
=

= + +∑x R , (6) 

Substituting Equations 3 and 4 into Equation 6 leads 
to 
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N
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i
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Now consider first-order approximation of ( )g x , 
denoted respectively by 

( ) ( )
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Comparison of Equations 7 and 8 indicates that the 
first-order approximation leads to the residual error 

( ) ( ) 2g g− =x x% R , which includes contributions 
from terms of two and higher order component func-
tions. 
The notion of 0

th
, 1

st
, etc. in HDMR expansion 

should not be confused with the terminology used ei-
ther in the Taylor series or in the conventional least-
squares based response surface model. It can be 
shown that, the first order component function 

( )i ig x  is the sum of all the Taylor series terms 
which contain and only contain variable ix . Hence 
first-order HDMR approximations should not be 
viewed as first-order Taylor series expansions nor do 
they limit the nonlinearity of ( )g x . Furthermore, 
the approximations contain contributions from all 
input variables. Thus, the infinite number of terms in 
the Taylor series are partitioned into finite different 
groups and each group corresponds to one cut-
HDMR component function. Therefore, any trun-
cated cut-HDMR expansion provides a better ap-
proximation and convergent solution of ( )g x  than 
any truncated Taylor series because the latter only 
contains a finite number of terms of Taylor series. 
Furthermore, the coefficients associated with higher 
dimensional terms are usually much smaller than 
that with one-dimensional terms. As such, the im-
pact of higher dimensional terms on the function is 
less, and therefore, can be neglected. Compared with 
the FORM and SORM which retains only linear and 
quadratic terms, respectively, first-order HDMR 
provides more accurate response surface approxima-
tion ( )g x%  of the original implicit limit 
state/performance function ( )g x . 

3 PROBABILITY DENSITY AND 
CHARATERISTIC FUNCTIONS 

 
The characteristic function, which is the Fourier 
transform of the marginal density, and the marginal 
density of a random variable Y are expressed as a 
pair of Fourier transforms (Lin, 1967) as follows: 

( ) ( ) 2 i y

Y Yp y M e d

∞

−

−∞

= ⌠
⌡

π θθ θ , (9) 

where ( )Yp y  and ( )YM θ  are the marginal density 
and characteristics function of Y, respectively.  i de-
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notes the imaginary number defined as 1i = − . 
These equations define the forward and the inverse 
Fourier transforms with ( )YM θ  as the forward Fou-
rier transform of ( )Yp y , and ( )Yp y  as the inverse 
Fourier transform of ( )YM θ . The properties of the 
characteristic function ( )YM θ  can be summarized 
as: 
(1) ( ) ( ) ( )1,Y Y YM M Mθ θ θ≤ − = , where and• •  
are the absolute value and the complex conjugate of 
• , respectively. 
(2) The characteristic function of a random variable 
X aY b= +  is expressed as 

( ) ( )2 i y

X YM e M a= π θθ θ . (10) 

(3) The characteristic function of a random variable 
Y, which is the sum of statistically independent ran-
dom variables 1 2, , , NY Y YL  is given by the product of 
the characteristic function of each random variable 

( ) ( ) ( )
1 2

, , ,
NY Y YM M Mθ θ θL  as 

( ) ( ) ( ) ( )
1 2 NY Y Y YM M M M= × × ×Lθ θ θ θ . (11) 

4 ESTIMATION OF FAILURE PROBABILITY 
USING HDMR AND FFT 

 
Concept of FFT can be applied to the problem if the 
limit state/performance function is in the form of a 
linear combination of independent variables and 
when either the marginal density or the characteristic 
function of each basic random variable is known. 
Even if the function of the basic variables is nonlin-
ear, an appropriate transformation of the basic ran-
dom variables could yield a linear function of inde-
pendent random variables. To achieve this linear 
function, the original limit state/performance func-
tion can be approximated by using a first-order Tay-
lor series expansion, but this gives very poor accu-
racy. If the second-order terms are considered in the 
approximation, the computational cost required for 
gradients calculation is very high. In the present 
study HDMR concepts are used to express the im-
plicit limit state/performance function ( )g x

 
which 

depends on { }1 2, , , N

Nx x x= ∈ℜx K , as a linear 
combination of lower order component functions. 
The steps involved in the proposed method for fail-
ure probability estimation as follows: 
1. If { }1 2, , ,

T N

Nu u u= ∈ℜu K  is the standard Gaus-
sian space, let { }* * * *

1 2
, , ,

T

N
u u u=u K  be the MPP or 

design point, determined by a standard nonlinear 
constrained optimization. The MPP has a distance 

HLβ , which is commonly referred to as the Hasofer–
Lind reliability index. Construct an orthogonal ma-
trix N N×∈ℜR  whose N−th column is * *

HLβ=α u , 
i.e., *

1
 =  R R α  where 1

1

N N× −∈ℜR  satisfies 
* 1 1

1 0T N× −= ∈ℜα R . The matrix R can be obtained, 
for example, by Gram–Schmidt orthogonalization. 

For an orthogonal transformation u = R v . Let 

{ }1 2, , ,
T N

Nv v v= ∈ℜv K  be the represent the rotated 
Gaussian space with the associated MPP 

{ }* * * *

1 2
, , ,

T

N
v v v=v K . The transformed limit 

state/performance functions ( )g v  therefore maps 
the original function into rotated Gaussian space 

( )v . 
First-order HDMR approximation of ( )g v in rotated 
Gaussian space v  with { }* * * *

1 2
, , ,

T

N
v v v=v K as refer-

ence point leads to: 
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N
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i
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N g

− +
=

≡

=

− −

∑

v

v

% K

K K . (12) 

In addition to the chosen reference point (the MPP in 
the present work), the accuracy of first-order HDMR 
approximation of ( )g v in Equation 12 may depend 
on the orientation of the first N − 1 axes.  In the pre-
sent work, the orientation is defined by the matrix R. 
In the above expressions, the terms 

( )* * * *

1 1 1
, , , , , ,

i i i N
g v v v v v− +K K  are the individual re-
sponse function and are independent of each other. 
Equation 12 can be rewritten as, 

( ) ( )*

1

,
N

i

i

i

g a g v
=

= +∑v v% , (13) 

where ( ) ( )*1a N g= − − v . 
2. An intermediate variables are defined as, 

( )*, i

i i
z g v= v . (14) 

The purpose of these new variables is to transform 
the approximate function ( )g v% into the following 
form 

( ) 1 2 Ng a z z z= + + + +v% L . (15) 

3. Due to rotational transformation, in v-space 
component functions iz  in Equation 15 are expected 
to be linear or weakly nonlinear function of random 
variables iv . In this work linear approximation of iz  
are considered. Consider a linear approximation: 

i i i iz b c v= + , where coefficients 
ib ∈ℜ  and 

ic ∈ℜ  
(non-zero) are obtained by are obtained by least-
squares approximations from exact or numerically 
simulated conditional responses 

( ) ( ) ( ){ }1 2, , , , , ,
T

i i n i

i i i
g v g v g vv v vL  at n sample 

points along the variable axis vi. The least-squares 
approximation is chosen over interpolation, because 
the former minimizes the error when n > 2. 
4. Since iv  follows standard Gaussian distribution, 
marginal density of the intermediate variables iz  can 
be easily obtained by simple transformation (using 
chain rule). 
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( ) ( )
1

i iZ i V i

i i

p z p v
dz dv

= . (16) 

5. Now since the approximate function ( )g v%  is a 
linear combination of intermediate variables 

iz , the 
joint density of ( )g v% , which is the convolution of 
the individual marginal density of the intervening 
variables iz , can be expressed as follows: 

( ) ( ) ( ) ( )
1 21 2 NZ Z Z NG

p g p z p z p z= × × ×%
% K , (17) 

where ( )
G

p g%
%  represents joint density of the re-

sponse function ( )g v% . 
6. Applying FFT on both sides of Equation 17, leads 
to, 

( ) ( )

( )

( )

1

2

1

2                     

                     
N

ZG

Z

Z N

FFT p g FFT p z

FFT p z

FFT p z

   =   

 ×  

 × ×  

%
%

K

. (18) 

7. By applying inverse FFT on both sides of Equa-
tion 18, joint density of the limit state/performance 
function ( )g v%  is obtained. 
8. The probability of failure is given by the following 
equation with t being a threshold value 

( )
t

F G
P p g dg

−∞

= ⌠
⌡ %

% % . (19) 

5 COMPUTATIONAL EFFORT 
 
If n is the number of sample points taken along each 
of the variable axis and s is the order of the compo-
nent function considered, starting from zeroth-order 
to l-th order, then the total number of function 
evaluations for HDMR approximation of the original 
limit state/performance function is given by, 

( )( ) ( )( )
0

! 1 ! !
l

s

s

N n N s s
=

− −∑  which grows polyno-
mially with n and s. As a few low order component 
functions of HDMR are used, the sample savings 
due to HDMR are significant compared to traditional 
sampling. Hence reliability analysis using HDMR re-
lies on an accurate reduced model being generated 
with a small number of full model simulations. The 
reliability index β  corresponding to the failure 
probability FP  can be obtained by 

( )1

FP−= −Φβ , (20) 

where ( )Φ �  is the cumulative distribution function 
of a standard Gaussian random variable. 

 

6 NUMERICAL EXAMPLES 
 
Two numerical examples involving structural sys-
tems are presented to illustrate the performance of 
the present method in conjunction with HDMR 
based response surface generation. To evaluate the 
accuracy and the efficiency of the present method 
comparisons of the estimated failure probability 

FP  
have been made with FORM/SORM and direct 
MCS. The coefficient of variation δ  of the esti-
mated failure probability FP  by direct MCS for the 
sampling size SN  considered, is computed using 

( )1 F

S F

P

N P

−
=δ . (21) 

When comparing computational efforts by various 
methods in evaluating the failure probability FP , the 
number of original limit state/performance function 
evaluations is chosen as the primary comparison tool 
in this paper. This is because of the fact that, number 
of function evaluations indirectly indicates the CPU 
time usage.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Sampling scheme for first-order HDMR; (a) For a 
function having one variable (v); and (b) For a function having 
two variables (v1 and v2) 

 
 
For direct MCS, the number of original function 

evaluations is same as the sampling size. While 
evaluating the failure probability FP  through direct 
MCS, CPU time is more because it involves number 
of repeated actual finite-element analysis. To obtain 
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linear/quadratic approximation of the HDMR com-
ponent functions, ( )3,5,7 or 9n =  uniformly distrib-
uted sample points ( )* 1 2iv n− − , ( )* 3 2iv n− − , …, 

*

iv , …, ( )* 3 2iv n+ − , ( )* 1 2iv n+ −  are deployed 
along each of the variable axis vi through the MPP. 
Thus total number of function evaluations required 
by the present method, in addition to those required 
for identification of the MPP is ( )1n N− . Sampling 
scheme for response surface approximation of a 
function having one variable (v) and two variables 
(v1 and v2) is shown in Figures 1(a) and 1(b) respec-
tively. 

6.1 Example 1: Dynamic Problem of Six Degrees of 
Freedom 

This example considers a four-storey building ex-
cited by a single period sinusoidal pulse of ground 
motion, studied by Gavin and Yau (2007). Figure 
2(a) shows the four-storey building with isolation 
systems and Figure 2(b) presents the acceleration 
history. The building contains isolated equipment 
resting on the second floor. The motion of the 
ground floor is resisted mainly by base isolation 
bearings and if its displacement exceeds 

( )0.50cD m=  then an additional stiffness force con-
tributes to the resistance. Mass, stiffness and damp-
ing coefficient 

fm , 
fk  and fc , respectively at each 

floor are assumed to be same. There are two isolated 
masses, representing isolated, shock-sensitive 
equipment resting on the second floor. The larger 
mass ( )1 500m kg=  is connected to the floor by a 
relatively flexible spring, ( )1 2500k N m= , and a 
damper, ( )1 350c N m s= , representing the isolation 
system. The smaller mass ( )2 100m kg=  is con-
nected to the larger mass by a relatively stiff spring, 

( )5

2
10k N m= , and a damper, ( )2 200c N m s= , 

representing the equipment itself. All variables are 
assumed to be lognormal and independent. 
The statistical properties of the random variables are 
listed in Table 1. The limit state/performance func-
tion is defined by the combination of three failure 
modes leading to system failure and is the following 
form 

( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )

1

2

2 1

2,3,4

12.50 0.04 max

        0.50 max

        2.0 0.25 max

i if f
t i

g m
t

f m
t

g x t x t

u t x t

x t x t

−
=

= − −

+ − +

+ − −

x

&& && , (22) 

where ( )
if

x t  refers to the displacement of th
i floor 

and ( ) ( )( )
1i if fx t x t

−
−  is the inter storey drift.  ( )gu t&&  

is the ground acceleration and ( )
2mx t&&  is the accelera-

tion smaller mass block. The displacement ( )
1mx t  is 

of the larger mass block, and represents the dis-
placement of the equipment isolation system. The 

limit state/performance function in Equation 22 is 
the overall representation of three failure modes. The 
first term describes the damage to the structural sys-
tem due to excessive deformation. The second term 
represents the damage to equipment caused by ex-
cessive acceleration. The last term represents the 
damage of the isolation system. The weighing fac-
tors, multiplied with each term in Equation 22, are 
mainly to emphasize the equal contribution of the 
individual failure modes to the overall failure of sys-
tem. It is desirable that (a) inter storey drift is limited 
to 0.04 m, (b) the peak acceleration of the equipment 
is less than 20.5m s , and (c) the displacement 
across the equipment isolation system is less than 
0.25 m. Equation 22 signifies overall system failure, 
which does not necessarily occur when above men-
tioned one or two failure criteria satisfies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Four-storey building (Example 1); (a) Base isolated 
structure with an equipment isolation system on the second 
floor; and (b) Acceleration history. 
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Table 1. Properties of the random variables for Example 1 

Random 
variable 

Units Mean COV 

fm  kg  6000 0.10 

fk  N m  30000000 0.10 

fc  N m s  60000 0.20 

yf  N 20000 0.20 

yd  m 0.05 0.20 

ck  N m  30000000 0.30 

T  s 1.0 0.20 

A  m m s  1.0 0.50 

 
The MPP of the function defined in Equation 22 is 
obtained using recursive quadratic programming al-
gorithm (Lim and Arora, 1986) with reliability index 

0.7538β = . Five uniformly distributed sample 
points (n = 5) are deployed along each of the vari-
able axis to estimate HDMR component functions. 
The reference point is taken as the MPP. Table 2 
compares the results obtained by the present method 
with FORM, SORM, and direct MCS and also pre-
sents the computational effort in terms of number of 
function evaluations, associated with each of the 
methods. 
 
Table 2. Estimation of failure probability, PF for Example 1 

Method PF 
Number of function 
evaluation

(a) 

FORM 
0.2254
9 

86 

SORM 
0.2141
0 

356 

Direct MCS
 0.1959

9 
100000 

Present method
 0.1969

6 
118

(b) 

(a) Total number of times the original performance function is 

calculated. 

(b) ( ) ( )86 1 86 5 1 8 118n N+ − × = + − × =  

 
The benchmark solution of the failure probability is 
obtained by direct MCS with 510SN = . The COV of 

FP  corresponding to this sampling size is 0.0064 
(computed using Equation 21). Compared with the 
benchmark solution ( )0.19599FP = , FORM and 
SORM overestimates the failure probability by 
around 15.05% ( )0.22549FP =  and 8.46% 

( )0.21410FP = , respectively. Proposed method 
overestimates the failure probability by about 0.49% 

( )0.19696FP =  and it needs only 118 (= 86 + 32) 
function evaluations, while FORM, SORM and di-
rect MCS requires 86, 356 and 10

6
 number of origi-

nal function evaluations, respectively. 
To examine the effect of number of sample points 
used for the present method, similar analyses are car-
rying out by varying n form 3 to 9. The variation of 
the reliability index β  and the estimated failure 
probability FP  with respect to number of sample 
points are presented in Figure 3(a) and Figure 3(b), 
respectively. It is observed that, FP  obtained using 

the present method ranges from 0.19769 (+0.86%) 
(at n = 3) to 0.19598 (−0.01%) (at n = 9). The com-
putational effort in terms of number of function 
evaluations for the present method are 102, 118, 134 
and 150 for n = 3, 5, 7 and 9, respectively. It is ob-
served that n = 5 provides the optimum number of 
function calls with acceptable accuracy in evaluating 
the failure probability 

FP  with the present method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Variation of reliability estimation (Example 1); (a) 
Reliability index, β; and (b) Probability of failure, PF 

 

6.2 Example 2: Three Bay Five Story Frame 
Structure 

This example examines the performance of the pre-
sent method for solving reliability problems involv-
ing correlated random variables. In this example a 
three-span, five-story frame structure, studied by Liu 
and Der Kiureghian (1991), is subjected to horizon-
tal loads, as shown in Figure 4, is investigated.   
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Figure 4. Frame structure for Example 2 

 
 
There are 21 random variables: (a) three applied 
loads, (b) two Young’s moduli, (c) eight moments of 
inertia, and (d) eight cross-sectional areas. The ran-
dom variables associated with frame elements are 
defined in Table 3. Table 4 lists statistical properties 
of all random variables. Lateral loads are assumed to 
be correlated by 0.50=ρ . The cross sectional areas 
and moment of inertias of each beam column ele-
ments are highly correlated ( )0.95=ρ . Other corre-
lations between cross sectional areas and moment of 
inertias are assumed as 0.13

i j i j i jA A I A I I
= = =ρ ρ ρ . 

The elastic modulus are correlated by 0.90=ρ . 
Remaining correlation properties are assumed to be 
zero. 
 
Table 3. Properties of frame elements for Example 2 

Element 
Young’s 
modulus 

Moment of 
inertia 

Cross-
section 

area 
B1 E4 I10 A18 

B2 E4 I11 A19 
B3 E4 I12 A20 
B4 E4 I13 A21 
C1 E5 I6 A14 
C2 E5 I7 A15 
C3 E5 I8 A16 
C4 E5 I9 A17 

 
Failure criteria is defined as exceedance of the ser-
viceability limit state, i.e., when the horizontal com-
ponent of the top-floor displacement ( )u x  exceeds 
0.2 ft, leading to 

( ) ( )0.2g u= −x x . (23) 

The structure is modeled using ADINA FE software. 
The MPP of the limit state/performance function de-
fined in Equation 23 is obtained using recursive 
quadratic programming algorithm (Lim and Arora, 
1986) with reliability index 3.1599β = . Seven uni-

formly distributed sample points (n = 7) along each 
of the variable axis are deployed for approximating 
HDMR component functions. The reference point is 
taken as the MPP. Table 5 compares the results ob-
tained by the present method with FORM, SORM, 
and direct MCS. A sampling size 610SN =  is con-
sidered in direct MCS (Wei and Rahman, 2007) to 
evaluate the failure probability 

FP  and the COV of 

FP  corresponding to this sampling size is 0.053 
(computed using Equation 21). Table 5 also contains 
the computational effort in terms of number of func-
tion evaluations, associated with each of the meth-
ods. Compared with the failure probability obtained 
using direct MCS ( )0.0003630FP = , FORM overes-
timates the failure probability by around 117.12% 

( )0.0007881FP =  and SORM underestimates by 
around 61.38% ( )0.0001402FP = , respectively. The 
present method overestimates the failure probability 
by about 2.48% ( )0.0003720FP = . Regarding the 
computational effort, the present method needs only 
600 function evaluations (ADINA FE model run), 
while FORM, SORM and direct MCS requires 474, 
1143 and 10

6
 number of original function evalua-

tions respectively. In this aspect, the present method 
seems slightly computationally expensive than 
FORM but provides significant accuracy even when 
compared with SORM. 
 
Table 4. Properties of random variables

(a)
 for Example 2 

Random 
variable 

Distribution Mean 
Standard de-
viation 

P1 Rayleigh 30 9 
P2 Rayleigh 20 8 
P3 Rayleigh 16 6.40 
E4 Normal 454000 40000 
E5 Normal 497000 40000 
I6 Normal 0.94 0.12 
I7 Normal 1.33 0.15 
I8 Normal 2.47 0.30 
I9 Normal 3.00 0.35 
I10 Normal 1.25 0.30 
I11 Normal 1.63 0.40 
I12 Normal 2.69 0.65 
I13 Normal 3.00 0.75 
A14 Normal 3.36 0.60 
A15 Normal 4.00 0.80 
A16 Normal 5.44 1.00 
A17 Normal 6.00 1.20 
A18 Normal 2.72 1.00 
A19 Normal 3.13 1.10 
A20 Normal 4.01 1.30 
A21 Normal 4.50 1.50 

(a) The units of Pi, Ei, Ii, and Ai are kip, kip/ft
2
, ft

4
, and ft

2
, re-

spectively 
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Table 5. Estimation of failure probability, PF for Example 2 

Method PF 
Number of function 
evaluation(a) 

FORM 0.0007881 474 
SORM 0.0001402 1143 
Direct MCS 

(b) 
0.0003630 1000000 

Decomposition 
Method (b) 0.0003829 600 

Present Method
 

0.0003723 600
(c)

 

(a) Total number of times the original performance function is 

calculated. 

(b) Wei and Rahman, 2007 

(c) ( ) ( )474 1 474 7 1 21 600n N+ − × = + − × =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Variation of reliability estimation (Example 2); (a) 
Reliability index, β; and (b) Probability of failure, PF 

 
 
The effect of number of sample points on the present 
method is examined by carrying a similar analysis 
varying n form 3 to 9. Figure 5(a) and Figure 5(b) 
presents respectively, the variation of the reliability 
index β  and the estimated failure probability FP  
with respect to number of sample points. Using the 
present method, FP  varies from 0.000482 (+32.78%) 
(at n = 3) to 0.000371 (+2.20%) (at n = 9). The com-
putational effort in terms of number of function 
evaluations for the present method are 512, 558, 600 

and 642 for n = 3, 5, 7 and 9, respectively. It is ob-
served that n = 7 provides the optimum number of 
function calls with acceptable accuracy in evaluating 
the failure probability 

FP  with the present method. 
 
 
 

7 SUMMARY AND CONCLUSIONS 
 

 
A new alternative method based on HDMR and FFT 
to estimate the structural failure probability of struc-
tural systems subject to random loads, material 
properties, and geometry, is presented. The proposed 
methodology is based on the limit state/performance 
function approximation and the convolution theorem 
to estimate the structural failure probability. The 
limit-state function is obtained by linear approxima-
tion of the first-order HDMR component functions 
at the MPP, and the convolution integral is solved 
efficiently using the FFT technique. The proposed 
effort in evaluating the failure probability involves 
calculating conditional responses at a selected sam-
ple points and the FFT of an explicit function. The 
results of numerical examples indicate that the pro-
posed technique estimates the failure probability ac-
curately with significantly less computational effort 
compared to the direct MCS. The accuracy and effi-
ciency of the proposed method is demonstrated 
through numerical examples involving implicit per-
formance functions. 
A parametric study is conducted with respect to the 
number of sample points n used in approximation of 
HDMR component functions and its effect on the es-
timated failure probability is investigated. An opti-
mum number of sample points n must be chosen in 
approximation of HDMR component functions. 
Very small number of sample points n should be 
avoided as approximation may not capture the 
nonlinearity outside the domain of sample points and 
it affects the estimated failure probability signifi-
cantly. 
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